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Abstract

A brain–computer interface, BCI, is a technical system that allows a person
to control the external world without relying on muscle activity. This the-
sis presents an EEG based BCI designed for automatic classification of two
dimensional hand movements. The long-term goal of the project is to build
an intuitive communication system for operation by people with severe mo-
tor impairments. If successful, such system could for example be used by a
paralyzed patient to control a word processor or a wheelchair.

The developed BCI was tested in an offline pilot study. In response to
an external cue, a test subject moved a joystick in one of four directions.
During the movement, EEG was recorded from seven electrodes mounted
on the subject’s scalp. An autoregressive model was fitted to the data, and
the extracted coefficients were used as input features to a neural network
based classifier. The classifier was trained to recognize the direction of the
movements. During the first half of the experiment, real physical movements
were performed. In the second half, subjects were instructed just to imagine
the hand moving the joystick, but to avoid any muscle activity.

The results of the experiment indicate that the EEG signals do in fact
contain extractable and classifiable information about the performed move-
ments, during both physical and imagined movements.

Keywords: Brain–Computer Interface, Neural Networks, EEG, Autore-
gressive modeling
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Notation

Throughout this thesis, the following notation is used. In general, scalar
variables are set in italics, aij , vectors and matrices are denoted by bold
letters, y = ATx, and calligraphic symbols are used to represent sets and
spaces, p1 ∈ D.

Acronyms

ALS amyotrophic lateral sclerosis
ANN artificial neural network
AR autoregressive model
BCI brain–computer interface
CNS central nervous system
DSP digital signal processor
EEG electroencephalogram
EOG electrooculogram
FFT fast Fourier transform
IIR infinite duration impulse response
LAR lagged autoregressive model
MLP multilayer perceptron
RMP resting membrane potential

Operations

aT transpose of vector a
xTw inner product of vectors x and w
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xii Notation

∇ gradient operator
∧ logical and
∨ logical or
¬ logical not
|x| absolute value of x
‖x‖ Euclidean norm of x
∩ intersection
∪ union
⊆ subset
⊂ proper subset, a subset which is not the entire set
∈ member of
[x ] concentration of ion x

Symbols

api AR-model coefficient
α momentum term
bpi backward prediction error
β sigmoid scale parameter
C set of EEG electrodes used for classification
Ctot set of all EEG electrodes used in experiment
cwin window center
Dtes set of test patterns
Dtrn set of training patterns
Dval set of validation patterns
δj local gradient of neuron j

epi forward prediction error
E error function
Ep total prediction error
η learning rate parameter
F Faraday’s constant
fc filter cut-off frequency



Notation xiii

fmax highest frequency component
fs sample frequency
ϕ(z) logistic sigmoid function
H(z) Heaviside threshold function or filter transfer function
Hann ANN node configuration vector
L AR model lag
n discrete time
p AR model order
P relative permeability
P(f) power spectrum
R autocorrelation function
R gas constant
Rc classification rate
ρ(C) information content in electrode set
t continuous time
T sample period or absolute temperature
Vm cell membrane potential
Vp potential at point p
w ANN weight vector
wwin window width
w0 threshold value
x̃n predicted value of xn

x ANN input vector
y ANN output vector
yd desired ANN output vector
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Chapter 1

Introduction

In the classic action book Firefox, written by Craig Thomas in 1977, an
American fighter pilot is sent off to the Soviet Union on a secret mission.
The task is to infiltrate the Russian Air Force and steal a new, highly
advanced, fighter aircraft, the MIG31 Firefox. What makes this fighter so
special is not that it is invisible to all radar systems or that it can reach a top
speed of five times the speed of sound. Instead, the most desirable feature
of the Firefox is its thought controlled combat computer. Using a special
helmet equipped with electrodes that detects his brain waves, the pilot can
engage the plane’s weapons on a target simply by using his thoughts.

The Firefox system is just one of many examples of people having their
minds coupled to computers that have appeared in different works of fiction.
As often depicted, the user simply thinks of a command, and the computer
responds, just as if the command had been entered on a keyboard. Such
system would arguably be the most intuitive interface between the user and
a computer, acting as a direct extension of the human nervous system. In
accordance with the terminology established by other researchers in this
field, we will refer to such system as a brain–computer interface, BCI.

1.1 Background

The dream of creating a direct link between the human brain and an elec-
tronic device was born in the mid 1960’s when the United States Department
of Defense initiated a program to help pilots interact with their aircraft. The
idea was to reduce the mental workload of the pilot by providing a new intu-
itive channel of communication with the plane’s computer. Unfortunately,
the technology of the time was not sophisticated enough to be used for such

1



2 CHAPTER 1. INTRODUCTION

complex tasks, and the program was cancelled after only a few years. How-
ever, even if the immediate success was limited, the project laid the ground
for other research programs and, since then, the area has grown extensively
and attracted researchers from many different disciplines.

1.2 Motive

The perhaps most interesting and important application of the BCI tech-
nology today, is medical rehabilitation. As the operation of a true brain–
computer interface does not require any muscle activity, a communication
system based on BCI techniques could be operated even by people with
severe motor impairments. A typical example is patients suffering from
amyotrophic lateral sclerosis, ALS, an incurable, neurological disease that
affects the ability to control muscles and gradually leads to paralysis. ALS
does not affect the brain cells or any intellectual functions, but it causes the
nerve cells that carry information from the brain to the muscles to cease
functioning and eventually die off. In late stages of ALS, no voluntary
muscle activity can occur, even though the brain still generates the corre-
sponding control signals. The purpose of a brain–computer interface in this
case, is to capture those signals directly from the brain and convert them
into a form that can be understood by a computer or other device. The
signals could then be used to operate for example a wheelchair, an artificial
limb or a word processor, thereby providing the patient with communication
channels previously cut-off by the disease.

This type of applications is now the major motivation for most researchers,
and during the last decade, great advances have been made. The progress
is partly due to the remarkable advances in computer technology, but also,
due to an improved understanding of the functionality of the brain. De-
spite the encouraging results of many programs, one should remember that
the human brain is an immensely complex organ, and the information that
can be extracted from it is very difficult to decipher. Designing a reliable
link between the human brain and an electronic device therefore remains a
formidable challenge.

1.3 What is a Brain–Computer Interface?

In general terms, a brain–computer interface is a technical system that
allows a person to control the external world without relying on muscle
activity. Rather than depending on the body’s normal output pathways
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of nerve cells and muscles, the input control signals are represented by
electrophysiological impulses recorded directly from the brain.

1.3.1 BCI Systems are not Mind Readers

A brain–computer interface is designed to recognize patterns in data ex-
tracted from the brain and associate the patterns with commands. Very
often these patterns, or states, are referred to as thoughts, and accordingly,
systems that rely on BCI techniques for input are described as being thought
controlled. This is somewhat unfortunate because it easily leads to the mis-
conception that BCI systems can read minds. They cannot. There is no
way any technical system today could tell what a person is thinking, and
there are several reasons for that. First, the sensing techniques that can
be used to extract information from the brain are imprecise, and they can
only represent a microscopic fraction of the brains total activity. Second,
even if we were able to extract the states from all the cells in the brain, that
information would be way too complex to handle, even for the most power-
ful super-computer. Third, brains are individual and unique. If two people
think of the exact same thing, the action schemes of their brain cells are
completely different. So, let us state it once and for all, computers cannot
read minds.

1.3.2 Techniques of Brain–Computer Interfacing

So, how does it really work then? Well, that of course depends on the tech-
niques used. Since the BCI area is rather new as a scientific field, there are
no rights or wrongs, and much of the research is based on trial-and-error.
Hence, many different approaches have been tried to solve similar problems.
Still, a few things are common to all brain–computer interfaces. For exam-
ple, practically all BCI systems consist of at least three modules: a signal
recorder, a signal preprocessor and a classification module, as described in
Figure 1.1.

Signal Recording

The majority of all existing BCI systems, including the one developed in
this project, use recordings of the electrical activity in the brain, so called
electroencephalogram, EEG, as the source of input. There are other meth-
ods, but most of them have some kind of serious drawback associated with
them that makes them inappropriate for this type of job. EEG recorders, on
the other hand, are typically fast, relatively inexpensive, and do normally
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Recorder

Preprocessor

Classifier

...3850301857618487...

...A, D, A, C, A, B, E, D...

Figure 1.1: The principle of a brain–computer interface. Most BCI sys-
tems consist of at least three modules: a recorder, a signal preprocessor
and a classifier.

not require any invasive procedures. We will therefore focus on EEG inputs
from now on. The purpose of the recorder module is to measure, amplify
and filter the EEG signal, before converting it to digital form and passing
it on to the preprocessor module.

Signal Preprocessing

In the preprocessor, the digital input signal is converted to a form that makes
it easier to classify. This transformation may include further filtering, noise
reduction, combination of different input channels or other forms of digital
signal processing.

Classification

The last step in the BCI chain is the classifier module. Here, the features
extracted by the preprocessor are used to sort consecutive input signal seg-
ments into categories. All categories generate different outputs from the
system. Often the classifier is based on some sort of adaptive self-learning
software that is trained to recognize the important patterns. In this project,
we are using a special form of artificial neural network for that part.
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1.3.3 Training Process

Since all brains are different, no BCI system can be developed that works
perfectly with all users, right from the beginning. Consequently, connecting
a brain–computer interface to a new user is an integration process that has
to involve some degree of adaptation. There are two ways to do this: have
the user adapt to the system or design the software to adapt to the specific
user. Both ways have their pros and cons.

The former approach requires less complex systems, since most of the
adaptation work is done by the user. In this case, the user learns to operate a
static system through a biofeedback process. The downside of this approach
is that the learning process may be long, typically requiring months of daily
training to reach acceptable accuracy.

The other way to go is to incorporate adaptive self-learning software into
the classifier module. This is the approach taken in this project. The main
idea is to place the burden of adjusting on the system rather than on the
user. Interfaces using this technique are typically faster, more general, more
extensible, and easier to use. On the other hand, they are also technically
more complex, and designing a good BCI based on this approach is a much
more challenging task. Despite the technical difficulties, many researchers
agree [18, 4] that this type of system has greater potential in the long run,
and much effort is therefore put into solving the problems associated with
it. A summary of the achievements of different BCI research groups can be
found in [27] and [7].

1.3.4 Problems

The biggest problem with most brain–computer interfaces is low accuracy.
Sometimes the output of the system does not match the input. This, of
course, can be more or less serious depending on the application. If used
for moving the cursor on a computer screen an erroneous output every now
and then might be tolerable, but if used for controlling the motion of a
wheelchair such behavior is, of course, unacceptable.

Another problem associated with many BCI paradigms is too long input–
output delays. Today, the most successful systems work at a transfer rate of
less than 30 bits per minute [28]. That might be enough to operate a simple
word processor system, but it is definitely too slow to control a wheelchair.

Most research today, including the project described in this thesis, there-
fore focuses on improving the two factors of speed and accuracy of BCI
communication.
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1.4 Purpose of this Work

The purpose of this project is twofold: to design and implement an offline
brain–computer interface, and then to test this system in a real BCI study.
The work on the project can accordingly be divided into two phases: one
theoretical and practical and one experimental.

1.4.1 BCI Framework Design

The first phase comprises the design and implementation of a fully func-
tional offline BCI system. The system should include functionality for
recording, preprocessing, and classifying multidimensional EEG data, as
already described in Figure 1.1. The preprocessor and the classifier should
be implemented as separate modules within the program to allow for easy
modification and testing of new design ideas. To make the system design
successful, this first phase also has to include a thorough investigation of
the theory behind the different parts of a BCI.

1.4.2 BCI Experiment

In the second phase of the project, the developed system should be tested
in a pilot study of movement related EEG, that is, brain waves recorded
during voluntary limb movement. The purpose of this part is to see if it is
possible to detect and categorize two dimensional joystick movements, both
when the subject performs real physical actions and when the movements
are merely imagined. The procedure of the experiment is as follows. The
test subject sits in front of a computer, with one hand on a joystick. In
response to a stimulus given by the computer, the joystick is moved in one
of four directions: left, right, up and down. During the movement, EEG
data is recorded by the BCI. After the experiment is completed, the data is
processed, and the output of the BCI system, one of five classes: left, right,
up, down or rest, is compared to the movements actually performed. The
accuracy of the system is defined as the number of correct classifications
divided by the total number of movements. In the first half of the experi-
ment, real physical movements are performed. In the second half, subjects
are instructed just to imagine the movements, but to remain relaxed.

1.4.3 Questions

The short-term aim of this research is to find suitable algorithms for pre-
processing and classification of movement related EEG data. In the project
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described in this thesis, we are taking a first step towards that by develop-
ing a framework for BCI algorithm evaluation and by testing that system
in a pilot study. The long-term research goal is to design an online brain–
computer interface for use by people with motor impairments.

The tool developed in this first step operates offline, that is, no classifi-
cation is done in real-time. There are two reasons for that. First, the main
purpose of the system is to serve as a research tool for studies on different
preprocessor and classification procedures. It is therefore important that
data can be recorded once and then analyzed multiple times to compare
and evaluate different algorithms. This would not be possible in a real-time
system that requires a continuous stream of new input data. The second
reason is that designing a successful online BCI system is a very complicated
task that involves a number of non-technical questions that are beyond the
scope of this work. For example: “how does the brain respond and adapt
to real-time feedback?” and “how does that adaptation affect the EEG?”.
All of these problems are added on top of the technical difficulties involved
in building a brain–computer interface. Due to the complexity of the prob-
lem, an online system design process is therefore likely to be fruitless if not
preceded by a thorough investigation about its associated technical prob-
lems. In other words, before spending any time and effort on developing a
real-time classification system we should make sure that we have evaluated
the algorithms in an offline study and solved any problem associated with
them. This is exactly what we are about to do in this project.

Hence, the bottom line question asked in this thesis is – can we find a set
of BCI techniques for extracting information from EEG that performs well
enough to motivate further research in an on-line study? The conclusion is
heavily dependant on the answers of a couple of other key-questions.

• Is it at all possible to discriminate between two-dimensional joystick
movements based on EEG recordings? And if so, with what accuracy?

• Is it possible to make the same classification even if the movements
are only imagined?

• How much data is needed to be able to make a reliable classification,
that is, what is the speed of the system?

• What parts of the brain are important sources of EEG for such clas-
sifications? Where on the skull should the electrodes be placed?



8 CHAPTER 1. INTRODUCTION

1.5 Limitations

In the experiment part of the project, EEG data is collected from four test
subjects, and one of them is selected for a deeper analysis. The reason
we are focusing on one test subject only is that the whole data analysis is
very time consuming and that the purpose of the project is to investigate
the possibility of extracting information from the EEG. To reach statistical
validity we would have to test a large number of subjects. However, such
investigation would not be meaningful unless we know that the selected
method has potential.

The technical investigation, in this first step, was limited to one type of
preprocessor and one type of adaptive classifier.

1.6 Thesis Disposition

As described, the work on this project has been naturally divided into two
phases. The first phase contains the design and implementation of a BCI
system, and the second part the conduction of an experiment using that
system. To make the work foreseeable the same structure has been applied
on the thesis.

The first part of the report therefore focuses on the theoretical back-
ground of the modules that make up a brain–computer interface. Chapter 2
discusses the first and most important component in any BCI, the human
brain. That discussion is followed by a chapter on EEG and EEG recording.
The next link in the BCI chain is the preprocessor. Consequently, Chapter 4
is devoted to preprocessing of EEG data. The last module in any BCI is the
classifier. In this project, we focus on classifiers based on Artificial Neural
Networks. This is done in Chapter 5.

The second part of the thesis describes conducted experiment. Chapter 6
describes the method used, including the experiment design, the equipment
used etc. The analyses of the data, including the results, are presented in
Chapter 7. Chapter 8 contains a discussion of the findings and suggestions
for follow-up experiments.

The software developed in phase one is briefly described in Appendix A.



Chapter 2

The Human Brain

The central nervous system, CNS, consists of two main components, the
spinal cord and the brain, where the latter is defined as the part that is
located inside the skull. In this chapter, we will focus on the structure of
the human brain, its basic building blocks, the neurons, and the electrical
activity inside these neurons.

2.1 Biological Neurons

The human brain is one of the most complicated objects ever studied and,
on the whole, it is still poorly understood. High-level questions like “what
is a thought?” and “how does the mind work?” remain unanswered, and
probably will for a long time. Instead, the assembled knowledge about the
brain is focused on low-level operations like, “what kind of cells make up
the different parts of the brain?” and “how are these cells interconnected?”.

The most fundamental component of the brain, and in fact of the whole
nervous system, is the neuron. The concept was introduced by Ramón y
Cajál in 1911 and led to a breakthrough in the understanding of the nervous
system.

One can distinguish two different kinds of neurons, interneuron cells that
are the dominant type of neurons in the CNS, and output cells that connect
the brain to muscles and sensory organs and different areas of the brain
to each other. Even if the two types of neurons serve different purposes
and differ from each other on a detailed level, the general structure of most
neurons is the same, as illustrated in Figure 2.1.

In the center of the neuron is the cell body, the soma. Attached to the
soma are two types of branches: the dendrites that serve as inputs and the
output axon.

9
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Axon

Soma

Dendrites

Axon terminals

Figure 2.1: The biological structure of a neuron. A typical neuron con-
sists of three distinct parts: the soma, the dendrites and the axon.

2.1.1 Dendrites

The term dendrite is derived from dendron, the Greek word for tree, reflect-
ing that their shape resembles that of a tree with branches that fork and
fork again into finer and finer structure. The number of branches varies
from only a few to hundreds of thousands. The dendrites act as input
connections through which all the information to the neuron arrives. An
important property of the dendrites is their ability to change over time,
to break connections with some nerve cells and form new connections with
other cells. This fundamental property is essential to the learning process.

2.1.2 Axon

The signal produced in the dendrites and the cell body is transmitted away
from the neuron through the output axon. The axon is a structure special-
ized in carrying information over distances in the nervous system and may
reach up to a meter or more in length. The information is transmitted in
form of electrical impulses called action potentials.

The axon begins at the part of the cell body called the axon hillock and
usually ends in a network of branches, collaterals, and endpoints, the so-
called, pre-synaptic terminals.
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2.1.3 Synapses

There are no anatomical connections between neurons. Instead, the cell
membranes of the neurons are separated by very small physical gaps, called
synapses. These junctions allow impulses from one cell to transmit to an-
other cell, electrically or using a chemical transmitter substance.

2.1.4 Models of the Neuron

Anatomically and functionally, a neuron is a stand-alone processing unit
specialized for transmitting and receiving electro-chemical signals, so called
action potentials. It accepts inputs from other cells through its dendrites
and adds them up in some way. If the result of the addition meets some,
neuron-dependent, condition, determined by the trigger zone near the axon
hillock, the cell “fires” by sending out a new signal through its output axon.
Figure 2.2 shows a simple mathematical model of a neuron.

Σ..
.

x1

x2

xm

Activation

function
Output

axon

In
p

u
t

d
e

n
d

rite
s

..
.

Synaptic weights

Trigger

zone

Axon

hillock

Figure 2.2: Simple mathematical model of a neuron.

2.2 The Electrical Activity in the Neurons

Like all cells in the nervous system, the neurons are composed mainly of
fluids contained within very thin membranes. These membranes are semi-
permeable, meaning that the interchange of molecules and ions between the
inside and the outside is restricted, but not entirely shut off. The fluid
inside of a neuron contains a high concentration of potassium K+ and low
concentrations of sodium Na+ and chloride Cl− ions. Conversely, outside
the cell, the concentration of Na+ and Cl− is high and the number of K+

ions is low. This difference in ionic concentration gives rise to an electrical
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voltage that can be described by the Goldman equation.

Vm =
RT

F
ln

(
PK [K+]o + PNa [Na+]o + PCl [Cl−]o
PK [K+]i + PNa [Na+]i + PCl [Cl−]i

)
≈ −70mV (2.1)

Here, R symbolizes the gas constant, T the absolute temperature and F ,
Faraday’s constant. The terms PK , PNa and PCl are the relative permeabil-
ity of the membrane to these three ions. The concentration of the different
ions inside and outside the cell is written as [ion]i and [ion]o respectively.
For a typical neuron at rest, the membrane potential is about −70mV. This
is referred to as the resting membrane potential, RMP.

2.2.1 Disturbed Electrochemical Equilibrium

It is important to remember that the forces of nature strive to move free
particles from a higher concentration to a lower. Hence, if not controlled,
the ions will move through the cell membrane until the concentration inside
the cell equals the concentration outside. This kind of equilibrium is called
a chemical equilibrium. Since the ions around the cell membrane are elec-
trically charged they are also affected by the electrical forces trying to move
positively charged ions to areas of negative charge and negatively charged
ions to positive areas. We say that nature is working to achieve electrical
equilibrium by eliminating the voltage over the cell membrane. The total
forces acting on the system due to the chemical and electrical imbalances is
called an electrochemical gradient.

The total gradient of the cell is maintained by the so-called sodium–
potassium pump that continuously pumps K+ ions into the cell and Na+

ions out through the membrane. Without this pump, the gradient would
level out and thereby, as we will see, remove the cell’s ability to transmit
signals to other cells.

2.2.2 Action Potential

The equilibrium in the neuron can be disturbed in many ways, electrically,
chemically and even mechanically. When the cell is stimulated in any of
these ways, the permeability of its membrane changes, making it possible
for ions to flow in and out of the cell. If the flow of ions through the mem-
brane is low, the sodium-potassium pump will quickly eliminate the distur-
bance and restore the concentration rates. If the flow is high, however, the
capacity of the ion pump may not be sufficient to reset the electrochemi-
cal gradient. This, of course, results in a change of the resting potential.
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If the voltage exceeds –55 mV, a special form of protein molecules opens
up the membrane to sodium ions, allowing Na+ to flow freely into the cell
for a fraction of a millisecond before it closes again. This process is called
depolarization and results in a large change of the membrane potential to
about +30 mV. Shortly after the depolarization, other proteins open up the
membrane for potassium ions resulting in a flow of K+ out of the cell. This
is called repolarization. The net flow of positively charged ions in to the
cell is therefore positive at first and then negative resulting in the mem-
brane potential change depicted in Figure 2.3. This impulse is called action
potential.

–   –   –   –   –   +   +   –    –   –   –   –   –   –   –   –   –   –   –   –

–   –   –   –   –   +   +   –   –   –   –   –   –   –   –   –   –   –   –   –
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Na+
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0
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potential
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potential

 - - - - - - - - - - -

Figure 2.3: The action potential in a nerve cell is generated by a flow of
ions through the cell membrane.

2.2.3 Action Potential Propagation

As sodium start to flow into the axon during the depolarization phase the
concentration of Na+ in that region will increase dramatically. Since the
Na+, like the K+, has a positive electrical charge, the ions have a repulsive
effect on each other, as on all positively charged particles. Accordingly,
the excess of Na+ causes all free particles with a positive charge to diffuse
away in the fluid inside the axon. This flow of positive charges causes a
new depolarization of the membrane close to the original depolarization
site as described in Figure 2.4. Hence, the action potential has become
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self-propagating. Analogously, when the membrane opens up for K+ the
reversed situation occurs, thus a wave of repolarization will chase the wave
of depolarization down the axon.
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Figure 2.4: Propagation of the action potential along the axon.

Action potentials flow in only one direction. This is because they are nor-
mally generated at the trigger region, the start of the axon close to the
soma.

2.2.4 Saltatory Propagation

The type of impulse propagation considered so far is called continuous prop-
agation, reflecting that the potential flows along the axon in a continuous
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manner with approximately constant velocity. This form of conduction is
typically that of muscle fibers or, so called, unmyelinated nerve axons. The
major part of the axons in the nerve systems, like the one presented in
Figure 2.1, are surrounded by a fatty substance called myelin sheath that
drastically changes the way impulses are transmitted. The myelin acts as a
type of electrical insulator and effectively blocks the flow of ions through the
cell membranes. At regular intervals the sheath is interrupted by neurofibral
nodes called the nodes of Ranvier. At these nodes the concentration of volt-
age gated ionic channels is very high allowing for a very efficient exchange
of Na+ ions. The direct consequence is that the action potential appears to
jump from node to node in a discrete manner. This type of conduction is
called saltatory propagation from the Latin saltare; to jump.

Myelin sheath Node of Ranvier

Action potential propagation

Figure 2.5: Saltatory propagation.

Because of the jumping, the propagation velocity of the action potential is
very high in myelinated axons, typically 12–120 m/s, as opposed to 0.2–2
m/s in unmyelinated axons.

2.3 The Structure of the Human Brain

Now that we know how the neurons in the brain communicate with each
other on a molecular level, we take a great leap in abstraction and focus on
the brain as a whole. By examining the drawing presented in Figure 2.6,
we can easily distinguish three distinct parts of the human brain: the large,
convoluted cerebrum, the rippled cerebellum and the brain stem.

In this thesis, we are mostly interested in the analysis of electrical signals
emanating from the cerebrum. We will therefore focus on that part with a
special interest in the layer surrounding it, the cerebral cortex.
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Cerebrum

Brain stem Cerebellum

Figure 2.6: The human brain consists of three different parts.

2.3.1 The Cerebral Cortex

The cerebrum is divided into two similar structures, the left and the right
hemisphere. The left hemisphere senses information from the right side of
the body and controls movements on the right side. Analogously, the right
hemisphere is connected to the left side of the body. The brain is said to
process information contra-laterally.

Together, the two hemispheres weigh about 1.4 kg and occupy most of the
interior of the skull. Both halves are covered with a thin layer of substance
that is extremely densely packed with neurons. Some estimates place the
number at more than 100 billion (1011) neurons. Knowing that each neu-
ron can be connected to as many as 10 thousand (104) other neurons gives
an idea of the complexity of the network. The layer holding this network
together is called the cerebral cortex. The cerebral cortex has been exten-
sively studied for many years, but due to its complexity, it is far from fully
understood. Researchers do agree, however, that the cortex seems to be the
center for higher order functions of the brain such as vision, hearing, motion
control, sensing and planning. It is also accepted that these functions are
localized so that different areas of the cortex are responsible for different
functions [14]. In fact, since the cortex is only about 5 millimeters thick it
can, essentially, be seen as a two-dimensional map of the functions of the
brain. Figure 2.7 shows the map with a few important areas marked out.
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Figure 2.7: The functionality of different areas of the cerebral cortex.

2.3.2 The Motor Homunculus

The purpose of this thesis is to analyze the electrical activity in the brain
during voluntary movement. Such movements are believed to be initiated in
the primary motor area, as shown in Figure 2.7. It is therefore instructive
to study that part of the cortex in more detail. It turns out that even the
primary motor area can be divided into regions depending on what parts of
the body they control. Figure 2.8 is a simplification of the classical motor
homunculus map drawn in 1950 by Penfield and Rasmussen [16]. They
showed that activity of particular parts of the primary motor cortex causes
movements of particular parts of the body.

Later, Penfield and Rasmussen also showed that a similar map could be
drawn for the sensory area of the cortex. For a designer of a brain–computer
interface this is important information, since it gives an indication on where
on the scalp the EEG electrodes should be located.
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Figure 2.8: The motor homunculus map. (After Penfield and Ras-
mussen, 1950.)



Chapter 3

EEG Recording

In the previous chapter, we studied the human brain, the cerebral cortex
and how information is processed internally in this important structure. It
is now time to see how that information can be extracted and recorded by
an external device. Doing that also means taking the first step in the design
of our brain–computer interface.

3.1 History of the EEG

The first discovery of electrical potentials generated in the brain was made
by the English physician Richard Caton, in 1875. Caton studied the brains
of cats and monkeys using electrodes probing directly on the exposed cor-
texes of the animals. Since there were no electronic amplifiers available at
that time, the probes were connected to simple galvanometers with optical
magnification. Considering the equipment available and the knowledge of
electricity at that time, the results of the experiments were impressive and
inspired many researchers to come and work in this new field.

Yet, it was not until more than fifty years later that the first recordings
from a human brain were made by the German psychiatrist Hans Berger.
In 1929, Berger announced that “it is possible to record the electric cur-
rents generated in the brain, without opening the skull, and to depict them
graphically on paper”. This form of recording was named electroencephalo-
gram, EEG. Later Berger also found that the EEG varies with the mental
state of the patient. This was a revolutionizing discovery that led to the
foundation of a brand new field of medical science, clinical neurophysiology.

19
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3.2 The Origin of the EEG Signal

As impressive as the results of Caton and Berger were, none of them could
explain where the recorded brain waves actually came from. Today, the
advances in neurology have brought us a lot closer to the answer.

The major part of the signals that can be observed in the EEG emanates
from neurons in the cerebral cortex. As described in Chapter 2.3, the cortex
is a thin layer of densely packed neurons that surrounds the two hemispheres
in the cerebrum.

Several types of neurons in the cortex contribute to the EEG, but the
most important is the pyramidal cell depicted in Figure 3.1.

Pyramidal 
cell

Stellate 
cell

Cerebral 
cortex 
layers

1

2

3

4

5

6

Figure 3.1: Pyramidal cell in the cortex.

The pyramidal cell can be recognized by its triangularly shaped cell body
and its long parallel dendrites that extend through all layers of the cortex,
perpendicular to the surface.1

3.2.1 Dipole Potential

When a dendrite of a pyramidal cell is triggered by an axon connected to it,
the cell membrane opens up, and a flow of positively charged ions enters the
cell. That flow leaves an excess of negative charges in the fluid surrounding
the “top of the pyramid”. The current that entered the dendrite spreads

1Other cells in the cortex usually have star-shaped dendrites. These cells are called
stellate cells.
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down the cell and escapes out of its deeper part creating a positive charge
in the extracellular fluid around the “base of the pyramid” as described by
Figure 3.2. The process is similar to the generation of the action potential
described in Section 2.2.
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Figure 3.2: Current flow within and around a triggered pyramidal cell.

From the outside, the activated cell can be seen as two electrical charges
of equal magnitude and opposite signs, separated by a distance, as shown
in Figure 3.3. Such system is referred to as an electric dipole. From the
theory of electromagnetism, we know that the electrical potential that can
be sensed from a dipole is a function of the magnitude of its charges, their
separation and the distance to the dipole.

For a simple system with only one dipole located in vacuum the potential
can be described as

Vp =
qd · r

4πε0 |r|3
=

qd cos θ

4πε0r2
. (3.1)

This expression is an extreme oversimplification of the relationship between
the surface potential and the neurons causing it. The enormous number of
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Figure 3.3: Schematic view of an electric dipole.

cells contributing to the electrical field, and the intricate mixture of different
materials the signal has to penetrate before it reaches the electrode, make
the reality far more complex. Still, we can learn a few interesting things
from Equation 3.1.

First, we see that the contribution from each dipole drops as the square
of the distance from the electrode. In practice, this means that only the
neurons located directly underneath the electrode and a few centimeters
around it can be detected in EEG.

Further, the cosine term in the nominator indicate that the alignment of
the pyramidal cell is important to the result. This is unfortunate because
it means that only neurons with dendrites perpendicular to the skull will
be measured accurately. As we know, the surface of the cerebrum is highly
convoluted with ridges and valleys, much like a walnut. This is a clever
biological solution that makes it possible to increase the area of the cortex
without increasing the size of the head. In fact, about two-thirds of the
cortex are hidden within the valleys between the folds of the cortex. In the
case of EEG, however, this is unfortunate because it means that electrical
activity of the neurons on the walls of the ridges is undetectable from the
surface. The reason is that the dipoles generated by these cells will be
parallel, not perpendicular, to the surface of the skull. Hence, the cosine
term will be zero. To reach these electrical fields we would have to advance
electrodes into the skull.
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3.3 Rhythms of the Brain

The neurons in the cerebral cortex are constantly active, and it is therefore
possible to observe changes in EEG at any time, even when the subject
for example is asleep. In fact, quite often, the amplitude of the recorded
EEG is larger at deep sleep than when the subject is fully awake. Why is
that? The answer is also somewhat related to Equation 3.1. If we were to
evaluate that expression numerically for a typical neuron, we would get a
potential contribution from the single cell of a few nanovolts, or less. Such
signals cannot be reliably detected by any, today existing, EEG recorder.
Hence, the EEG signals that can be observed by electrodes on the scalp
have to be the sum of many thousands of neurons activated at the same
time. The interesting consequence of this is that the magnitude of the
EEG signal is more or less independent on the total neural activity in the
brain. The important factor is instead how synchronized the activity is. At
deep sleep the brain is resting, body movement is minimal, eyes are closed,
and experiments indicate that most sensory inputs do not even reach the
cortex. In this phase when there are no external disturbances, the neurons
in the cortex enter a rhythmic state that is believed to be synchronized from
the thalamus. That explains why the EEG is larger in amplitude when you
are asleep than when you are awake. It is simply just more synchronized.
The same phenomenon can be observed in relaxed subjects who open and
close their eyes during a recording, as shown in Figure 3.4.

The different rhythms that can be detected in EEG have been shown to
correlate with different states of behavior in the subject. The waves are
usually categorized based on their frequency content. The first rhythm to
be discovered was the alpha rhythm; then followed the beta, theta and delta
rhythms. Figure 3.5 illustrates the different rhythms.

3.3.1 Alpha

The alpha waves lie in the frequency spectra between 8 and 13 Hz and
usually have an amplitude of about 50 µV. The waves are mostly found
in the occipital region, at the back of the head, in people who are awake
and resting with their eyes shut. During sleep, the alpha waves disappear
completely.

3.3.2 Beta

If a resting person suddenly opens the eyes or engages in some sort of mental
activity, like doing arithmetic in the head, the alpha waves normally dis-
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appear and are replaced by less synchronized waves of higher frequencies,
13–30 Hz, so called beta waves. The beta rhythms have a maximum ampli-
tude of 20 µV and are mostly found in the parietal and frontal regions, see
Figure 2.7.

3.3.3 Theta

The theta rhythm, 4–8 Hz, is commonly found in children and adults in light
sleep. Sometimes, emotional stress and frustration can trigger periods of
theta activity. Most of the waves can be found in the parietal and temporal
regions, and their amplitude is usually less than 100 µV.

3.3.4 Delta

The delta waves are associated with deep sleep, but can also be found in
the EEG from infants. Delta waves have the lowest frequency 0.5–4 Hz, but
also the highest amplitude, sometimes over 100 µV.

3.4 Recording EEG

The principle of recording EEG is actually relatively simple. Two or more
electrodes are attached to the scalp of the subject. The electrodes are
connected to the inputs of an amplifier, which filters and magnifies the
signal. The output from the amplifier is then, either presented on paper by
an analog curve writer or sampled and stored for digital processing.

3.4.1 Electrodes

The purpose of an electrode in general is to transfer electrical impulses
from a recording site to the input of the recorder. In clinical EEG, the most
commonly used electrode type is surface electrodes consisting of small metal
discs that are applied directly on the scalp of the patient. Needle electrodes
that are inserted under the skin are not recommended due to the risk of
infection. The clip electrode is a special form of surface electrode that can
be used to detect signals from, for example, the earlobes. Figure 3.6 shows
the two types of disc electrodes.

The discs of a surface electrode are usually made of gold or silver, coated
with a thin layer of silver chloride, platinum or some other metal that does
not interact chemically with the scalp. The diameter of the discs has to
be somewhere between 4 and 10 millimeters to yield good electrical and
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Figure 3.6: The electrodes most commonly used in clinical EEG are sur-
face electrodes in form of metal discs that are attached directly on the
skull of the patient or in form of clips used for recordings from the ear-
lobes.

mechanical contact. The electrical contact is very important to the results
of the recording. If the impedance between the electrode and the skin is too
large, the recorded signal is attenuated, and therefore it easily drowns in
surrounding noise. As a rule-of-thumb it is desirable to keep the impedance
below 10 kΩ. To minimize the electrode impedance it is important to clean
the application site on the scalp carefully before applying the electrodes.
Lightly scrubbing the skin and wiping it with alcohol usually does the job.
To further reduce the impedance several types of contact gels and pastes
have been developed that can be applied between the skin and the elec-
trode. The paste increases the conductivity of the skin and helps keeping
the electrode in place.

3.4.2 Filters

Almost any EEG amplifier available on the market has a set of filters
integrated with the amplifiers. A high-pass filter is used to remove DC-
components, and a low-pass filter removes high frequency noise. Most EEG
machines also provide a special notch-filter that eliminates frequency com-
ponents around 50/60 Hz. The notch filter reduces the most common elec-
trical artifact, interference from equipment powered by alternating current.
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3.4.3 Amplifiers

As described, the EEG signals that can be detected on the scalp have maxi-
mum amplitude of a few hundred microvolts. Consequently, the overall gain
of the amplifier has to be very high, typically 10.000 or more. Most EEG
amplifiers are so called differential amplifiers where the output is generated
by the difference between two inputs that are related to the same reference.
This property makes the amplifier less sensitive to noise.

3.5 The 10–20 System for Electrode Placement

Since different regions of the cortex have different functionality, the electri-
cal activity recorded by electrodes on the scalp can vary greatly depending
on the position of the electrode. To make it possible to compare record-
ings made by different researchers and be able to repeat previously made
experiments, an international group of neurophysiologists in 1947 set out to
develop a standard for the placement of EEG electrodes. Several important
design principles were agreed upon.

• The electrode positions should be measured from standard positions
on the skull that can be easily detected in any subject, for example
the nasion, the point where the nose meets the forehead.

• All parts of the head should be represented with name-given positions.

• The names should be in terms of brain areas instead of just numbers
to make it possible for a non-specialist to understand.

• Studies should be made to determine the functionality of the part of
the cortex underlying each electrode. The electrode should be named
thereafter.

The work on the design of the system was led by Herbert Jasper and was pre-
sented at a conference in Paris, 1949 [13]. Jasper named the work “the 10–20
system”, and it is now the most widely used standard for EEG electrode
placement. The system works as follows.

The positions in the anterior–posterior direction is based on the distance
over the center of the scalp between the nasion, the root of the nose, and the
inion, the small protuberance of the skull at the back of the head. Along
this line, five points are marked as depicted in Figure 3.7. The first point is
called the frontal pole (Fp) and is placed 10% of the nasion–inion distance
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from the nasion. The following points are named: frontal (F), central (C),
parietal (P) and occipital (O), and are positioned 20% of the distance from
each other with the F-point 20% away from the Fp-point. That leaves 10%
between the O-point and the inion.

Fp

Nasion

Inion

20%

20%

20%

20%

10%

10%

F

C

P

O

Figure 3.7: Division of the midline between nasion and inion according
to the 10-20 system. (From Jasper, 1958.)

The measurements in the left–right direction is based on a imagined line
between the so called preauricular points2, just in front of the left and the
right ear, passing through the previously determined central point on the
top of the head. That line is divided in the same 10–20-way as the nasion–
inion line, and the five points are named from left to right: T3, C3, Cz, C4,
and T4, as illustrated in Figure 3.8.

The following electrodes are placed along two lines between the frontal
point and occipital point, passing through the T3 electrode on the left side
and the T4 electrode on the right side, as shown in Figure 3.9. As before

2The preauricular point can be felt as a small depression at the root of the zygoma
just in front of the tragus (the small piece of cartilage near the opening of the auditory
canal in the ear).
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Figure 3.8: Frontal view of the head showing electrode positions along
the central line. (From Jasper, 1958.)

this line is divided in 10% and 20% sections, and the electrodes placed on
these new positions are called O1, T5, T3, F7 and Fp1 on the left side and
O2, T6, T4, F8 and Fp2 on the right side.

Next, the previously defined frontal point is assigned an electrode, Fz.
Through this point, a line is drawn from F7 to F8. On this line, two new
electrodes are placed, F4, equidistant from F8 and Fz, and F3, equidistant
from F7 and Fz. Finally, in exactly the same way, the three last electrodes
P3, Pz and P4 are positioned between T5 and T6.
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Figure 3.9: Top view of the skull illustrating electrode positions according
to the 10–20 system. (From Jasper, 1958.)



Chapter 4

Preprocessing of EEG Data

In the introduction of this thesis, we described the general structure of a
brain–computer interface as a system composed of three different modules:
a recording module, a preprocessor stage and a classifier. The process of
recording the electrical activity in the brain has already been discussed. In
this chapter, we focus on how to convert, or preprocess, that raw signal to
a form that makes it better suited for the classification.

The boundaries between the different stages of a BCI are often fuzzy, and
it is not always easy to tell where one stage ends and another begins. For
example, the classifier module can act as a part of the preprocessing. Often,
but not always, the preprocessor stage performs fixed transformations of the
data, while the classifier contains parameters that are adapted through a
training process.

4.1 Feature Extraction and Selection

The concept of preprocessing in this context is actually a matter of two op-
erations, feature extraction and feature selection. The former is the process
of acquiring data, usually numerical values, about the object to be classified.
The operation can be a simple measure of physical properties of the object
like length and weight. It can also be more complex like calculating the
Fourier transform of a radio signal to find the power in a certain frequency
band. Feature selection is the operation of choosing what features to use
for classification. As we shall see later, it is desirable to keep the number
of features needed for the classification at a minimum. There are several
reasons for this. First, the generalization capability of many classifiers is
known to deteriorate if the dimension of the input increases above a certain

31
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point. This is related to the problem called the curse of dimensionality [11].
Second, very large adaptive classifiers may be cumbersome to work with as
the training time normally grows very fast with the dimension of the data.

Sometimes feature selection means calculating new patterns by combining
two or more selected features. When used this way feature selection can be
regarded as a form of feature extraction. As we see, the distinction between
selection and extraction is fuzzy, and very often the concepts overlap. In
the subsequent text, we will refer to both concepts as feature extraction, or
sometimes simply preprocessing.

4.2 Time Series

In its most general form, a brain–computer interface is a system that mea-
sures a continuous multidimensional signal and converts it to a symbol, for
example, an integer, corresponding to one of a set of classes.

Since the input to the system is a continuous signal, usually an analog
voltage, and the processing of the signal is performed by a digital computer,
the input has to be converted into a digital form. This operation is called
sampling and means that the current value of the input is measured peri-
odically. If the measurements are ordered according to the sample time the
set is called a time series and is denoted

x [n] = (x0, x1, x2, . . . , xN ) . (4.1)

The samples x[n] can be scalars or, if two or more channels are sampled
simultaneously, vectors of dimension d, where d is the number of channels.
Often, the sample period, that is, the time between two measurements is
fixed. The sampling is then called uniform. In order not to lose any in-
formation contained in the signal due to the sampling, the sample period,
denoted T , has to meet the requirement

T =
1
fs

<
1

2fmax
. (4.2)

The frequency fs is called the sample frequency, and fmax represents the
highest frequency component contained in the signal to be sampled. Equa-
tion 4.2 is often referred to as the Nyquist-Shannon sampling theorem.

In this thesis, we are dealing primarily with multidimensional EEG sig-
nals. As described in Chapter 3, such signals are believed to have most
of its information content in the spectrum below 30 Hz. Most studies on
brain–computer interfaces therefore focus on that part by filtering out all
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components above some maximum frequency using a low-pass filter. For
all recordings in this project we have set the filter cut-off frequency to
fc = 30 Hz and the sample frequency to fs = 256Hz.

4.3 Temporal Signal Processing

As stated, a time series is an ordered set of d-dimensional measurements
x[n], where n denotes the position within the sequence. The classification
of such series can be done on a sample-by-sample basis by treating each
sample individually. Hence, the task is reduced to a classification of a
set of static patterns {x1,x2, ...,xn} resulting in an equally sized set of
labels {C1, C2, ..., Cn}. Usually, we are only interested in one label, the
one that classifies the time series as a whole. The produced labels can
then be combined by some sort of post processing procedure, for example
majority voting to form the overall label. This method does not consider
any information about subsequent samples in the series. Therefore, it is
mostly useful if the different samples in the time series are uncorrelated.

Generally, when the time series is produced by a physical process, for
example EEG, there is significant correlation between the different samples.
This information can be very useful in the classification procedure, and just
ignoring it as proposed above will most certainly decrease the classification
rate of the system [9]. The solution to the problem is to treat the samples
not just as points in a d-dimensional space, but as parts of a trajectory,
where the points are connected by the order given by the extra dimension
time. Hence, the goal of the classification is to label the trajectory instead
of the individual points. Figure 4.1 illustrates the difference between non-
temporal and temporal classification. For the remainder of this chapter we
will discuss temporal preprocessing only.

The purpose of the temporal preprocessing stage is to convert a set of
successive samples into a static pattern in a way that preserves as much
as possible of the information in the signal. Creating a good preprocessor
module is a non-trivial problem and one of the most important parts in the
design of a system for time series classification, such as a brain–computer
interface. Several important design issues have to be addressed.

4.3.1 Selecting Window Width

One question is how many samples to process at the time. If using too
many, the latency of the system, that is, the delay from input to output,
may become too large. In a real-time BCI system, controlling for example
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Figure 4.1: Principles of non-temporal versus temporal preprocessing.

a wheelchair an input-output delay of one second is probably too much.
If making the window too short important information about the relations
between samples may be lost resulting in bad classification performance and
a high error rate. In the extreme case, only one sample is used. The system
then degenerates to a non-temporal classifier. The optimal window width is
a compromise that depends on the input signal, the preprocessing method
and the classifier.

4.3.2 Linear or Non-linear Models

The dominating way of analyzing physiological signals, like the EEG, is by
classical linear modeling. The main reason for this is that linear models
have been studied for centuries, and therefore the theory on these methods
is comprehensive.

From a signal processing perspective, little is known about the physio-
logical factors generating the EEG. It is accepted that the signals are non-
stationary1, and there are indications that they may be non-linear as well
[8], although this has not been conclusively demonstrated.

In [12] Hazarika, Tsoi and Sergejew show that a non-linear preprocessing
technique based on Newton-Rhapson iterations can produce better clas-
sifications results on specific types of EEG than the corresponding linear
model. However, the differences are small, and the method presented has
several drawbacks like potential instability and long processing times. Still

1A non-stationary signal has statistical properties, e.g. mean value, variance or fre-
quency spectrum that varies over time.
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the idea is interesting, and the topic deserves further investigation. In this
thesis however, we focus on the more reliable linear methods.

4.4 Time Series Modeling

The procedure of extracting classifiable features from a time series is very
closely related to a larger group of problems referred to as parametric signal
modeling. As we shall see, many techniques from the signal-processing field
can be successfully applied to our problem. Parametric modeling deals with
the problem of representing a signal, usually a time series, by using only a
small number of carefully chosen parameters.

Say, for example that we want to transmit a signal in form of a sine wave
across some sort of communication channel. The signal has the form

x (t) = A sin (2πft + ϕ) . (4.3)

One way of doing this is of course to sample the signal, with a sample fre-
quency higher than twice the frequency of the wave itself, and then transmit
each sample individually. This would be clumsy however and use far more
bandwidth than actually needed. A more efficient way would be just to
transmit the parameters A, f and ϕ. The receiver could then reconstruct
the signal perfectly, without noise. Figure 4.2 illustrates the concept.

Parametric

modeling

A sin(2πft+ϕ) A sin(2πft+ϕ)

Transmitter Receiver

Reconstruction

A, f, ϕ

Figure 4.2: Example of parametric signal modeling.

4.4.1 Adaptive or Non-adaptive Models

The example above illustrates the principle of non-adaptive parametric mod-
eling, that is, the estimated parameters do not change in time. Because of
this, the model requires that the signal is stationary. In other words, the sta-
tistical properties of the signal like average amplitude and frequency content
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must not vary from one time to another. If the signal is not stationary, the
parameters will have to be adapted as the properties of the input changes.
Such models are therefore called adaptive parametric models.

The electroencephalogram is non-stationary in that it has a time vary-
ing frequency spectrum. This, however, does not mean that non–adaptive
models are useless for EEG modeling. The spectrum varies only slowly so
the EEG can in fact be considered stationary over short intervals. In other
words if we use segments of recorded EEG shorter than a certain length we
can consider the signal in that segment to be stationary and thereby still
use the less complex non-adaptive techniques. Pardey et al [15], recommend
windows no longer than one second for non-adaptive modeling.

4.5 Autoregressive Modeling

The by far most common way of modeling time series like the EEG is by
fitting a so-called autoregressive model, AR, to the data. Mathematically
this means that the sample xn, at a certain point in time n is described as
a linearly weighted sum of the previous p values.

x̃n = −
p∑

i=1

apixn−i (4.4)

The weights api are the parameters to be estimated. We realize that if the
model was perfect for all n we could use the predicted value x̃n together
with the p − 1 most recent values of x to predict the value of x̃n+1. Then,
this new value can be used to estimate x̃n+2 and so on, recursively, until
the whole time series was defined. It would thus be possible to completely
reconstruct the time series x given the coefficients api and an appropriate
set of starting points {x0,. . . ,x p}. Different starting points correspond to
different realizations of the signal. Normally, in an EEG signal classifica-
tion system we are only interested in the frequency content of the input
signal. And, as we soon will see, all that information is contained in the
AR coefficients api.

In the normal case, p is much shorter than the window length N , and
hence determining the coefficients has to be a compromise between the
coefficients obtained for each n. The difference between the predicted value
x̃n and the true value xn is denoted epn and is defined by

epn = xn +
p∑

i=1

apixn−i. (4.5)
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Figure 4.3: AR model forward prediction.

The total prediction error can be written as the mean value of the square
of the local errors.

Ep =
1
N

N∑

n=1

e2
pn =

1
N

N∑

n=1

(
xn +

p∑

i=1

apixn−i

)2

(4.6)

The best set of AR parameters is taken to be the one that minimizes the
total prediction error Ep. Since we know that the optimum for such problem
has to be an extreme point, all partial derivatives of Ep with respect to the
coefficients has to be zero.

∂Ep

∂ai
= 0 for i = 1, 2, . . . , p (4.7)

Applying this constraint to the definition of Ep gives us the following set of
equations.




1
N

N∑
n=1

xn−1xn−1 · · · 1
N

N∑
n=1

xn−pxn−1

1
N

N∑
n=1

xn−1xn−2 · · · 1
N

N∑
n=1

xn−pxn−2

...
. . .

...

1
N

N∑
n=1

xn−1xn−p · · · 1
N

N∑
n=1

xn−pxn−p







ap1

ap2

...
app




= −




1
N

N∑
n=1

xnxn−1

1
N

N∑
n=1

xnxn−2

...

1
N

N∑
n=1

xnxn−p




(4.8)
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A more compact way of writing this system is by using so called truncated
autocorrelation functions R0,. . . ,Rp defined by

R|i−j| =
1
N

N∑

n=1

xn−ixn−j for 0 ≤ i ≤ p, 1 ≤ j ≤ p. (4.9)

Substituting 4.9 into 4.8 yields the Yule-Walker equations.




R0 R1 · · · Rp−1

R1 R2 · · · Rp−2

...
...

. . .
...

Rp−1 Rp−2 · · · Rp







ap1

ap2

...
app




= −




R1

R2

...
Rp




(4.10)

The method of calculating the AR coefficients from 4.10 is termed the au-
tocorrelation method and can be efficiently implemented using the recursive
Levinson-Durbin algorithm [15].

4.5.1 Backward Prediction

Just as the AR coefficients can be used to predict the next value of a time
series, the same set of parameters can be used to retrospectively predict
past values in terms of future values. Figure 4.4 illustrates the concept.

Consequently, there are two different ways of estimating the optimal
AR coefficients, using normal and reversed time. Generally, they do not
give the same results even if the underlying time series is the same.

A natural idea is therefore to modify the forward prediction method de-
scribed above to try to make it optimal even for the reversed prediction.
We name the prediction error defined in 4.5 forward prediction error and
define a similar term for the backward prediction error.

bpn = xn−p +
p∑

i=1

apixn−p+i (4.11)

It can be shown [15] that the forward and backward prediction errors are
related in a recursive way.

epn = e(p−1)n + appb(p−1)(n−1)

bpn = b(p−1)(n−1) + appe(p−1)n

(4.12)
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Figure 4.4: AR model forward and backward prediction.

We rewrite the total prediction error to account for the backward prediction
error as well.

Ep =
1

2 (N − p)

N∑

n=p+1

(
e2
pn + b2

pn

)
(4.13)

Differentiating and setting all partial derivatives to zero gives a set of equa-
tions just like 4.10 that can be solved for api. The most efficient way of
solving the system is by using the recursivity defined by the error terms in
4.12 together with another important property of the autoregressive coeffi-
cients.

ami = a(m−1)i + amma(m−1)(m−i) for 1 ≤ i ≤ m− 1 (4.14)

This relationship is termed Levinson recursion, and it means that if we
know all coefficients for a p–1 order model together with the last coefficient
of order p, the other parameters aip can be determined. In other words if
we know a11 and a22 we can calculate a21, and then if we know a33, we can
determine a31 and a32 etc. This is important because it leads up to a very
efficient way of recursively determine all AR coefficients. So all we need is
a way of determining app based on the coefficients of models of order p–1.
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Substituting 4.12 into 4.13 differentiating yields

Ep =

N∑
n=p+1

(
[e(p−1)n+appb(p−1)(n−1)]

2
+[b(p−1)(n−1)+appe(p−1)n]2

)

2(N−p)

∂Ep

∂app
=

[
N∑

n=p+1
(2e(p−1)nb(p−1)(n−1))+app

N∑
n=p+1

(
b2
(p−1)(n−1)

+e2
(p−1)n

)]

2(N−p)

(4.15)

We set the partial derivative to zero and solve for app

app =
−2

N∑
n=p+1

(
e(p−1)nb(p−1)(n−1)

)

N∑
n=p+1

(
b2
(p−1)(n−1) + e2

(p−1)n

) (4.16)

We now have all the ingredients we need to recursively calculate all AR co-
efficients. For p = 0, no prediction takes place so both the forward and
backward prediction error equals the true value of that sample. This gives
us a starting point for the algorithm

e0n = xn for 1 ≤ n ≤ N

b0n = xn for 1 ≤ n ≤ N
(4.17)

Equation 4.12, 4.16 and 4.17 shows how to extend the estimation to calculate
any coefficient. So, for m = 1,2. . . ,p we simply repeat the following steps.

amm =
−2

N∑
n=m+1

b(m−1)(n−1)e(m−1)n

N∑
n=m+1

[
b2
(m−1)(n−1)

+e2
(m−1)n

]

ami = a(m−1)i + amma(m−1)(m−i) for 1 ≤ i ≤ m− 1
emn = e(m−1)n + ammb(m−1)(n−1) for 1 ≤ n ≤ N −m

bmn = b(m−1)(n−1) + amme(m−1)n for 1 ≤ n ≤ N −m

(4.18)

The procedure described by 4.17 and 4.18 is called Burg’s algorithm and was
formulated by John Parker Burg in 1960. It is very efficient. We note that
the loop in 4.18 will be repeated p times and that the number of operations
each time is on the order N . Hence, the complete algorithm require on the
order of Np operations. This should be compared to solving the equations
4.10 by, for example, Gaussian elimination that require Np2 operations to
set up the equations and then p3 operations to solve them.



4.5. AUTOREGRESSIVE MODELING 41

What makes the Burg method so attractive is not only its efficiency, but
also the fact that the so-called reflection coefficients are bounded by one
according to the Cauchy-Schwartz inequality.

|amm| =
2

∣∣∣∣
N∑

n=m+1
b(m−1)(n−1)e(m−1)n

∣∣∣∣
N∑

n=m+1

[
b2
(m−1)(n−1) + e2

(m−1)n

] =
2
∣∣bT

m−1em−1

∣∣
|bm−1|2 + |em−1|2

≤ 1 (4.19)

This makes the model numerically stable. For a more thorough discussion
about model stability, see [10].

4.5.2 Frequency Representation of the AR Model

We said before that, all of the interesting frequency content in the input
signal x is embedded in the AR coefficients, if the model is good enough. To
understand this we start by repeating the actual definition of the AR model
with the forward prediction error included

xn = −
p∑

i=1

apixn−i + epn (4.20)

In terms of digital signal processing, Equation 4.20 defines an infinite im-
pulse response filter, IIR, fed by the error term ep. Figure 4.5 illustrates a
schematic realization of a third order IIR-filter corresponding to an AR model
with p = 3. Rearranging the recurrence relation 4.20 and taking the z-
transform gives the transfer function, H(z), for the IIR-filter.

epn = xn +
p∑

i=1

apixn−i ⇔ E (z) =

(
1 +

p∑

i=1

apiz
−i

)
X (z) (4.21)

H (z) =
1

1 +
p∑

i=1
apiz−i

(4.22)

The z-transform of the output signal is thus determined by the ratio

X (z) = H (z) E (z) =
1

1 +
p∑

i=1
apiz−i

E (z) . (4.23)
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Figure 4.5: Third order AR model represented as an IIR filter.

As we know the frequency spectrum of the output signal is determined by
its Fourier transform. In this case the Fourier transform is actually the z-
transform restricted to the unit circle in the z-plane, z = ej2πfT , where T is
the sample period. In practice if the AR model is good, the error term e(n)
can be approximated with a white noise sequence with a constant frequency
spectrum. Consequently, the power spectrum of the output signal depend
solely on the AR coefficients

P (f) =
K(

1 +
p∑

i=1
apie−i2πjfT

)(
1 +

p∑
i=1

apie+i2πjfT

) (4.24)

where K is some positive real constant. In other words, a good autoregres-
sive model of a signal effectively summarizes everything there is to know
about its frequency content. That is exactly what we are interested in here.

4.6 Lagged Autoregressive Models

We note that a factorization of the denominator in 4.24 gives a total number
of 2p zeros. Since the coefficients in the polynomials are real, the roots
are either real or complex conjugated. Consequently, both factors in the
denominator in the rightmost part of 4.24 have the same p roots. At the
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most, p/2 of these roots are located in the upper half of the unit circle, that
is, in the frequency range

0 ≤ f ≤ 1
2T

(4.25)

which is the part of the spectra we are interested in. This shows that an
autoregressive model of order p can pick up to p/2 distinct frequency peaks
of the signal and represent frequencies up to f = fs/2.

Sometimes it is necessary to use a sample frequency that is significantly
higher than twice the maximum frequency component. The reason for this
might be that the recorder only has fixed sample periods or that the built
in band pass filter has bad performance. Using a higher sample frequency
increases the width of the frequency spectrum, but it also reduces the reso-
lution, and therefore it is known to make the model more sensitive to noise
[18]. The solution to this problem is to down sample the signal by a fac-
tor, L, before applying the Burg algorithm and thus reduce the effective
sample frequency by the same factor. Of course, the sequence also has to
be low pass filtered before down sampling to avoid aliasing. Remember the
Nyquist-Shannon sampling theorem. Effectively this technique means that
the taps of the autoregressive model are separated by L samples. The model
is said to have a lag of L, and the technique is referred to as lagged autore-
gressive modeling, LAR. This is the technique we will be using for the rest
of this project.
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Chapter 5

Classification with Neural
Networks

The last and arguably most important part of a BCI system is the classifier
module. The purpose of the classifier is to sort sequences of data from the
preprocessor into distinct categories. As described in the thesis introduc-
tion, the recorder and the preprocessor typically perform static transforma-
tions while the classifier often includes adaptive self-learning software that
is taught to produce the correct classifications based on a set of training
examples.

Several paradigms of adaptive software have been developed, as parts of
research in artificial intelligence, AI. One of the most successful for classifi-
cation tasks is so called artificial neural networks, ANN, a paradigm that is
related to biological networks and tries to mimic the structure of the human
brain. This chapter contains a brief discussion about the history behind the
evolution of ANNs and a detailed description of the type of network used
in this project, the multilayer perceptron.

5.1 What are Neural Networks?

Neural Networks, or artificial neural networks to be precise, represent a
technology with many applications. Therefore, it has attracted researchers
from a wide variety of disciplines like computer science, psychology, physics
and neuroscience. The work on ANNs has been inspired by the way biolog-
ical nervous systems, such as the human brain, process information. The
ultimate aim is to design a computer paradigm that can handle problems
which the biological brain solves easily, but where conventional computers

45
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usually do a poor job. Vision, speech recognition and the ability to learn
from training data are only a couple of examples.

5.2 Biological versus Artificial Neural Nets

The human brain, as described in Chapter 2, is one of the most compli-
cated things man has ever studied, and it is still understood only on a very
basic level. In computer science terms, the brain is a highly complex, non-
linear, parallel computer with the capability to organize itself to adapt to
its environment. The approach of most research on neural networks is to
try to capture the low-level structure of the brain and apply it to computer
systems. Haykin [11] suggests the following definition of a neural network
originally proposed by Aleksander and Morton (1990).

Definition 5.1 “A neural network is a massively parallel, distributed pro-
cessor made up of simple processing units, which has a natural propensity for
storing experiential knowledge and making it available for use. It resembles
the brain in two respects:

1. Knowledge is acquired by the network from its environment through a
learning process.

2. Interneuron connection strengths, known as synaptic weights are used
to store the acquired knowledge.”

5.3 Properties of Neural Networks

Different types of artificial neural networks have different structures and,
therefore, different advantages and disadvantages. Still some important
properties are common to most neural network paradigms.

5.3.1 Learning

One of the most important properties of neural networks is their ability
to learn from examples, that is, learn to produce a certain output when
presented with a certain input. The learning process involves modification
of the internal parameters in the net, the connection weights, to make its
overall behavior correspond to a desired behavior defined by a set of training
examples. Each example in the training set consists of an input pattern and
a desired output pattern. To train the network we pick an example from
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the training set, feed it to the network and see what output it produces.
If the output is not what we expected, we modify the internal weights of
the network according to some training algorithm, so as to minimize the
difference between the desired and the actual output. The training is then
continued with another training example and so on, until the network has
reached steady state where no more significant changes to the weights are
made, and hopefully the system produces correct outputs for all examples
in the training set.

5.3.2 Generalization

The capability to learn is one of the main reasons why neural networks have
become popular in so many different disciplines. Even if we have little or no
knowledge about the actual process producing the input–output mapping
we can still learn it from examples.

More important than the actual learning, however, is the network’s ca-
pability to generalize, that is, to produce good outputs even for inputs not
encountered during training. We will come back to the topic of generaliza-
tion performance in the last section of this chapter.

5.3.3 Non-linearity

Mathematically a neural network defines a mapping from an input space to
an output space. This mapping can be described as a vector-valued function
y = f(x) that transforms the input vector x to an output vector y. Both x
and y can be of any dimensionality. The mapping f itself is a combination
of mappings performed in parallel by simpler units, the neurons. The in-
formation processing in each neuron is non-linear, and hence the resulting
mapping is non-linear. The property of non-linearity has proven to be very
important, especially if the physical mechanism that generates the input
signal is non-linear.

5.3.4 Fault Tolerance

When we talk about robust- and fault tolerant systems, we usually mean
systems that keep on functioning even if parts of them stop working. The
human brain is a beautiful example of a fault tolerant system. Every day
a number of neurons in the brain die off, as a part of the natural course of
events. Nevertheless, the brain as a whole keeps on working just as if nothing
has happened. Only if the damage is severe, changes in the performance can
be noticed. Even then, the performance falls gradually to a lower level. It
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does not drop to zero and start producing nonsense outputs. This is known
as graceful degradation. The good property of fault tolerance in the brain
is much due to its massively parallel, distributed structure. Since artificial
neural networks try to mimic that structure, they also inherit a lot of the
robustness the brain comprises.

5.4 Layered Networks

The perhaps most well known form of Neural Networks is the multilayer
perceptron, MLP. Its structure was proposed by Rumelhart and McClelland
in 1986, and it is now the most widely used of all kinds of ANNs. The
multilayer perceptron consists of a number of neurons organized in what
the authors describe as layers. It has an input layer, an output layer and in
between one or more hidden layers as shown in Figure 5.1.

Input Hidden Output

Figure 5.1: The structure of a multilayer perceptron.

The perceptron is an example of a feedforward neural network. By this,
we mean that the signals are always passed forward through the network,
from the input layer to the output layer, via the hidden layers. This ensures
stability in the system. We will discuss this further in the following sections
along with a very common training algorithm. But, before we go into detail,
we should take a brief look at the building blocks that make up the network,
the perceptrons.

5.4.1 Perceptrons

The concept of perceptrons was first introduced by Rosenblatt, 1962. His
work was based on earlier models of the biological neuron by McCulloch
and Pitts from the mid-forties. A single perceptron is a processing element
with a number of inputs and one output. The output is usually defined to
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be a function of the weighted sum of the inputs. Mathematically we can
express this as

y = f

(
N∑

i=1

wixi − w0

)
= f

(
N∑

i=0

wixi

)
= f (z) (5.1)

where y is the output term, xi is the ith of N inputs and wi its associated
weight. In the last step we have included the term w0 in the sum by setting
x0 = −1. The function, f , is always some sort of monotone threshold
function for example the Heaviside function, H (z), or the logistic sigmoid,
ϕ (z).

H (z) =

{
1 z ≥ 0
0 z < 0

ϕ (z) =
1

1 + e−βz
(5.2)

Both functions share the property that their outputs tend to zero for nega-
tive inputs and to unity for positive ones. This means that the function in
5.1 will switch from zero to one when the weighted sum of the non-constant
inputs becomes higher than w0. The term w0 is therefore called threshold
value.

5.4.2 Example

So, how can we use this to produce something useful? Well, say for example
that we have a perceptron with two binary inputs and two weights w1 = 0.5
and w2 = −0.5. Further, we set the output function to be the Heaviside
function and the threshold to w0 = 0.25. This will give us the simple
network presented in Figure 5.2.

0.25

X2

X1 0.5

–0.5

Y

Figure 5.2: Rosenblatt single layer perceptron network.

If we present this network with the inputs x1 = 1 and x2 = 0 we get the
output

y = H (0.5 · 1 + (−0.5) · 0− 0.25) = H (0.25) = 1 (5.3)

whilst if we change any of the input values we will get y = 0. In other
words, we have constructed a network that knows how to compute the
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Boolean function
y = x1 ∧ ¬x2. (5.4)

Now, say that we change the second weight to w2 = 0.5. The network will
then produce the output y = 0, if and only if both inputs are zero. That
is, we have altered the behavior of the net to produce, not the expression
in 5.4, but a Boolean OR.

This example might seem trivial, but it shows something important: we
can change the behavior of our network simply by varying the weights. This
is fundamental to all forms of neural networks and the principle learning is
based upon.

5.5 Learning in Single Layer Networks

So far, we have seen how a network can produce useful outputs when the
weights have been preset to proper values. This is good, but normally we
expect a lot more from a neural network. We expect it to be able to learn.

The perhaps most straightforward way of learning is learning by mistakes.
That is, if we present the network with a certain input and it produces an
erroneous output we want it to adjust internally to reduce the risk of making
that same mistake again. We then hope that the next time we present the
same or similar input the network will respond correctly. In this form of
training we have to guide the network through the process by providing
the right answers to all presented inputs. We therefore call it supervised
learning.

There are several algorithms for supervised training of a single layer net-
work. Most methods, however, follow the same simple principles. If an
incorrect output is encountered during training, the weights of the inputs
that contributed to that output are adjusted in a direction towards a cor-
rect solution. The weight changes are usually taken to be proportional to
the corresponding input. If the network responds correctly, no changes are
made at all. Hence, given a set of examples in the form of input–output
pairs, we can train the net by simply presenting one input at the time, ad-
just the weights if necessary, and then go on with the next input. One loop
through the whole set of examples is called an epoch. It can be proven that
the network will converge towards a solution – if a solution exists [11, 23].

5.5.1 Linear Separability

The examples we have seen so far all belong to the class of pattern classi-
fication problems. We have a set of inputs and one output. For some of
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the inputs we want the network to produce a certain output, for the others,
another output. We want the network to classify the input patterns in two
distinct categories.

One serious limitation to the single layer perceptron is that it is unable to
solve classification problems where the classes are not linearly separable. To
understand this we express the inputs and weights as vectors and make use
of some theorems from linear algebra. If a perceptron has N inputs we can
describe them as an (N + 1)-dimensional vector x = (−1, x1, x2, . . . , xN )T

and the associated weights as another (N + 1)-dimensional vector w =
(w0, w1, . . . , wN )T . With this terminology, the sum in 5.1 can be written
compactly as the matrix product xTw. We now see that the matter of
classifying the input vector x comes down to finding out whether or not
xTw is positive or negative. The decision boundary can be expressed by
the linear equation

xTw = 0 (5.5)

which in terms of linear algebra defines an N -dimensional hyperplane. This
means that a two-dimensional pattern space will be divided by a straight
line, a three-dimensional space is partitioned by a plane etc.

5.5.2 The XOR Problem

However, if we try to train a single layer perceptron to learn the Boolean
function XOR we will quickly run into trouble. The reason for this is that
the two classes, xTw < 0 and xTw > 0, are not linearly separable. Learning
this problem corresponds solving the set of simultaneous equations





0 · w1 + 0 · w2 < w0

0 · w1 + 1 · w2 > w0

1 · w1 + 0 · w2 > w0

1 · w1 + 1 · w2 < w0

(5.6)

that obviously has no solution. It is impossible to determine w1 and w2,
that is, to draw a straight line trough the two-dimensional pattern space,
so that all four inequalities are satisfied. Figure 5.3 illustrates the problem.

5.6 The Multilayer Perceptron

The XOR-problem clearly demonstrates the shortcomings of the single layer
perceptron. Unfortunately, this drawback, when first proven by Minsky and
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Figure 5.3: The XOR problem of linear separability.

Papert in their influential book Perceptrons from 1969, killed a lot of the
interest in neural systems. It was not until almost twenty years later when
Rumelhart and McClelland proposed their idea of the multilayer perceptron
that the area caught attention again.

The multilayer perceptron does not suffer from the linear separability
problem. In fact it can be proven that a three-layer network is sufficient
to solve any classification problem provided the number of nodes is high
enough. This important finding is often referred to as the Kolmogorov
theorem. We will discuss this further in the next section, but first we have
to straighten out a few questions regarding the structure of the multilayer
perceptron.

When we talk about a three-layer network in this context, we mean a
network with three layers of variable weights, three active layers. This
might be a bit confusing, since most multilayer networks also contain a
separate input layer that has fixed weights and only one input per node.
Hence, this input layer does not contribute to the training of the network;
it just passes its input on to the next layer, as shown in Figure 5.4. To be
consistent with the terminology for the single layer perceptron we shall still
refer to this as a three-layer network.

To summarize, a three-layer network has three active layers: one output
layer and two hidden layers. Each node in these layers correspond to the
Rosenblatt perceptron, that is, their output is the weighted sum of their
inputs passed through some sort of activation function, normally the logistic
function. In addition to these layers, the network also contains an input
layer that does nothing but distributes the inputs to the other layers.
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Input Hidden OutputHidden

Figure 5.4: A three-layer perceptron network; one input layer and three
active layers.

5.7 Learning in Multilayer Networks

As for the Rosenblatt perceptron many different algorithms for training
multilayer feedforward networks have been developed. Here we focus on one
of them, the backpropagation algorithm or delta rule. However, before we
describe the actual training algorithm we shall try to state mathematically
what we mean by learning.

For a perfectly trained network, that always gives the desired output no
matter the input pattern, we can say that the error is zero. For any other
net, we need to define a function that estimates how far from a perfect
solution we are. We call this an error function and denote it E.

The error function is hence a real-valued function that, for a fixed input,
measures the distance between the actual output, y, and the desired output,
d, for all active nodes in the network. An intuitive way of defining such
function is to use the Euclidean distance

E =
1
2

N∑

i=1

(yi − di)
2. (5.7)

We see that E is always positive, as we expected, so our aim is to achieve
a situation where E → 0. If we again think in terms of linear algebra the
actual outputs and the desired outputs can be arranged as N -dimensional
vectors, y and d, and the error function can be written as

E =
1
2

(y − d)T (y − d) (5.8)

Hence, the problem of training the network is nothing but a multi-dimensional,
non-linear and unconstrained optimization problem.
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5.7.1 Steepest Descent Algorithm

Standard procedure for solving problems like this is by some sort of iterative
search algorithm. Our object function is the error, E, and the variables are
of course the weights in the active layers w. For a two-dimensional problem,
that is a network with only two variable weights, we can visualize the error
function as an energy landscape, like the one in Figure 5.5.
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Figure 5.5: Error function of a two-dimensional problem.

The idea behind most search algorithms is to start in some initial point in
the landscape and then repeatedly work the way downward by taking small
steps in well-chosen directions.

To find these directions we start by making a first order Taylor expansion
of E around some initial point w0 and se how we can minimize that linear
function instead.

E (w) = E (w0) +∇E (w0)
T (w −w0) (5.9)

The first term in the approximation is a constant so we cannot do much
about that. The second term is in fact a dot product, which has its minimum
when the two vectors are parallel but with opposite signs. That is,

w = w0 − η∇E(w0) (5.10)
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where η is some small constant. Consequently, we are ensured to decrease
the value of the error function by adjusting the weights according to 5.10,
provided the gradient is non-zero, and the step-length, η, is small enough.
With this done, we simply recalculate 5.10 from the new point and so on,
until the solution is good enough. This method is to mathematicians known
as the steepest descent algorithm.

5.8 The Backpropagation Rule

Now that we have a method of adjusting the weights, all we have to do is to
express 5.10 in terms of single weights. As the vector ∇E is a collection of
partial derivatives arranged as a column vector, focusing on a single weight
in the system corresponds to extracting one row from the weight update
formula.

wij ← wij − η
∂E

∂wij
(5.11)

This will be the update rule for the weight that connects node i and node
j. We recall that the output from node i is

yi = f

(∑

k→i

wkiyk

)
= f (zi) (5.12)

where the sum is taken over all nodes k that connect to node i. We rewrite
the partial derivative by the chain rule and develop.

∂E

∂wij
=

∂E

∂zi

∂zi

∂wij
=

∂E

∂zj
yi = yi (yj − dj)

∂f (zj)
∂zj

= yiδj (5.13)

Note that E is differentiable if and only if the activation function f is
differentiable, so from now on we have to forget about using the Heaviside
function as our threshold. Focusing instead on the logistic sigmoid function
the last derivative yields

∂f

∂zi
=

∂

∂zi

(
1

1 + e−βzi

)
=

β

(1 + e−βzi)2
e−βzi = f (1− f) . (5.14)

Combining these results gives us the final update rule for the nodes in the
output layer.

wij = wij − ηβy2
j (1− yj) (yj − dj) (5.15)
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However, this formula is only applicable to nodes for which we know the
desired output value d. For the nodes in the hidden layers, we have to select
a different approach. By reviewing 5.13 and noting that

∂E

∂yj
=

∑

k

∂E

∂zk

∂zk

∂yj
=

∑

k

∂E

∂zk

∂

∂yj

∑

i

wjkyi =
∑

k

∂E

∂zk
wjk =

∑

k

δkwjk

(5.16)
and therefore

δj =
∂f (zj)

∂zj

∑

k

δkwjk (5.17)

we obtain the update rule for hidden nodes

wij ← wij − ηβy2
j (1− yj)

∑

k

δkwjk (5.18)

The last sum is taken over all nodes k that are connected to the output of
node j. This is principally important because it means that the update of
the weights has to be performed backwards through the network. Before
we can update the weights in node j, we have to calculate the error term
δk for all its successors. This is the reason why the algorithm is called
backpropagation.

5.8.1 Improving the Algorithm

Although the backpropagation algorithm works very well in most cases, it
has some general problems associated with it. The steps through the weight
space are always taken in the direction of the steepest descent of the error
function, with a length proportional to the slope at that point. This means
that as soon as we get close to a local minimum we most likely get stuck
there because the slope is zero at all extreme-points, that is, ∇E = 0.

However, we have no way of knowing if that extreme point is in fact the
global minimum we are looking for, all we know is that it is a local extreme
point. Sometimes if the error in the extreme point is close enough to the
global minimum we can accept that non-optimal solution, but occasionally
we might end up in a hollow that produces an unacceptable output. Un-
fortunately, there is no universal solution to this problem. Sometimes the
network will settle in a local minimum, and all we can do is try to minimize
the probability of this happening.

Several modifications to the backpropagation algorithm have been sug-
gested to achieve this. One of the most successful is the introduction of a
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momentum term in the weight update formula.

w
(k+1)
ij = w

(k)
ij − η

∂E

∂wk
ij

+ α
(
w

(k)
ij − w

(k−1)
ij

)
(5.19)

This recursivity adds a form of inertia to the motion in the energy landscape
and can sometimes effectively speed up convergence. It also decreases the
risk of being trapped in an early local minimum. For stability reasons we
see that α must be positive and less than unity, 0 ≤ α < 1.

We can now summarize the modified backpropagation algorithm in a few
steps.

Algorithm 5.1 Backpropagation

1. Initialize w by setting all weights to small random numbers
2. Present a training pattern to the input layer and calculate the outputs from

all nodes in the network in a feedforward way according to

y =
1

1 + e
−β

N∑
i=0

wixi

.

3. Adjust the weights in the output layer

w
(p+1)
ij = w

(p)
ij − ηβy2

j (1− yj) (yj − dj) + α
(
w

(p)
ij − w

(p−1)
ij

)

where η is the learning rate, β the spread of the threshold function and α
the momentum term. The actual output from node j is denoted yj and the
desired output dj .

4. Work the way backwards through the network, and update the rest of the
weights according to the backpropagation rule

w
(p+1)
ij = w

(p)
ij − ηβy2

j (1− yj)
∑

k

δkwjk + α
(
w

(p)
ij − w

(p−1)
ij

)
.

The error term δk is the error of the successor node k given by

δk = βyk (1− yk) (yk − dk)

for output nodes and

δk = βyk (1− yk)
∑
m

δmwjm

for the nodes in the hidden layers.
5. Repeat from 2 until result is good enough.
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5.9 Generalization Performance

In the last step of the backpropagation algorithm, we vaguely defined the
looping criterion as, “repeat until result is good enough”. What exactly
is good enough – and what is the result we are talking about? Obviously,
we need to clarify the concepts and define some measure that tells us the
performance of the network. As previously pointed out, the most important
property of a neural network is its capability to generalize. In practice, this
means to perform correct input–output mappings for inputs not used when
training the network.

5.9.1 Overfitting

In many ways, training a neural network is equal to fitting a curve to a set
of data points as described in Figure 5.6. The curve represents the input–
output mapping and is a result of the network learning the training data
points. The training error defined in 5.7 correspond to the total distance
between the curve and the points. Analogously, we can define a test error
Etes as the distance between the curve and a set of test data points drawn
from the same population as the training data but not previously seen by
the network,

Etes =
∑

‖yp − dp‖. (5.20)

The summation above is taken over all points p in the test set, and thus, the
test error can be seen as an estimation of the networks total generalization
error. A neural network with good generalization capability will produce
good input–output mappings even for data points that differ slightly from
the ones in the training set. Hence, it will yield a low test error. However,
this does not necessarily mean that the training error is at its minimum.

The continuous line, a, in Figure 5.6, represents the output of a properly
trained network. It does not pass through all points in the training set,
but it yields a good approximation of the data set as a whole. The dotted
line, b, on the other hand, fits all training points exactly, but it gives a
poor representation of data points not in the training set. This behavior is
referred to as overfitting.

Practically all types of neural networks are prone to overfitting, and the
multilayer perceptron is no exception. Remember that the aim of the back-
propagation algorithm is to minimize the training error at any cost. This
means that at some point during training, the network will reach a state
where the generalization does not improve anymore. If the training pro-
ceeds past that point, the net will begin to overfit and thus inevitably lose
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Figure 5.6: Overfitting problem.

its ability to generalize. Numerous methods have been proposed to solve
the overfitting problem.

5.9.2 Early Stopping

The most intuitive way of dealing with overfitting is to stop training when
the generalization error has reached its minimum. This technique is known
as early stopping. It sounds simple in theory, but in reality, it is not. We
have no way of knowing when we have reached the optimal point. Also,
remember that the test error is only an estimation of the networks gener-
alization error. In most introductory books on neural networks, the error
curves produced by the training set and a test set are presented as smooth,
continuous functions like the ones in Figure 5.7.

If this were the case, we would simply interrupt the training process as
soon as the error on the test set begins to increase. Unfortunately, reality is
almost always more complex than the schoolbook examples. In most real-
world situations, the error curves have a number of local minima, and it is
impossible to tell when we have reached the best one. In the classification
package written in this project, we have worked our way around the prob-
lem by saving the internal state of the network every time Etes reaches a
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Figure 5.7: Training and test error as a function of training time.

minimum. That allows us interrupt the training at any time and always be
able to go back to the best state encountered so far. Of course, one could
argue that the test data used to measure the performance of the classifier
should not be used for creating the model. This is a sound viewpoint since
the main idea behind using Etes as an approximation of the generalization
error is that the test set should consist of unseen data only. To solve this
dilemma, the package also includes functionality for monitoring a third set
of data, a validation set, similar to the test set. This makes it possible to
train the network on the training data, interrupt the training when the error
on the validation data reaches its minimum and finally use the classification
error on the test data to measure the performance of the network. For a
more thorough analysis on backpropagation stopping criteria see [22].

5.9.3 Dimensionality Control

Another way of preventing overfitting is to reduce the number of degrees
of freedom of the network. This again is analogous to the curve-fitting
problem. Let us review Figure 5.6. The training data in this example
comes from a physical process y = P (x) + ε where P (x) is a polynomial
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and ε some random noise. It is clear that the best approximation of the
data set is achieved by curve a, which is in fact a least-mean-square fit
of a third order polynomial. The more complex dotted curve b shows the
typical symptoms of overfitting. Instead of fitting just the underlying signal
P (x) , it uses all its extra degrees of freedom to fit the noise in the training
data with poor generalization as result. The dashed curve c, on the other
hand, does not have sufficient amount of free parameters to fit the data and
therefore suffers from underfitting.

In a multilayer perceptron network, every weight represents a degree of
freedom, and consequently, the problem of improving generalization through
dimensionality control is a problem of choosing an appropriate number of
nodes in the hidden layers of the network. A small network may not be
complex enough to partition a complicated pattern space, and a large net-
work may be overfitting the data, leading to poor generalization. These are
the consequences of the curse of dimensionality.

5.9.4 Amount of Training Data

The analogy with the curve-fitting problem can be drawn even further. We
realize that the oscillating behavior of curve b in Figure 5.6 is because it has
enough degrees of freedom to fit every point in the test set individually. It
does not have to compromise like the other two graphs. However, say that
we had access to more training data from the same process and that we start
adding points to the training set. Eventually, we will reach the point when
there are not enough free parameters in curve b to fit them all, and hence,
it will too have to start compromising. This will effectively reduce the os-
cillations and thereby improve the curves generalization. In the multilayer
perceptron case, this means that large networks require more training data
to maintain good generalization capability. Haykin [11] suggests the follow-
ing rule-of-thumb for the relation between the number of training points N
and the number of weights in the network W . The ε denotes the fraction
of permitted errors on test data.

N = O
(

W

ε

)
. (5.21)

The point here is that generalization depends on both the size of the training
set and the size of the network and that finding a good setup is a critical
and non-trivial issue.
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Chapter 6

Practical Experiment

So far, we have discussed the theory behind brain–computer interfacing. We
have looked at the functionality of the human brain and how its electrical
activity can be extracted in form of EEG signals. We have also discussed
appropriate algorithms for preprocessing and classifying the recorded infor-
mation. In other words, we have concluded the design of our BCI system
and thereby fulfilled the first purpose of this thesis.

The second purpose is to implement the design ideas and test them in a
pilot experiment. The implemented software is described in Appendix A,
and this chapter is devoted to the actual experiment.

6.1 Background

The task selected for this part deals with classification of brain waves related
to voluntary limb movement. The purpose is to see if it is possible to detect
and categorize two dimensional joystick movements, based on recorded EEG
alone. The experiment is performed both for real physical movements and
for imagined movements.

The motive for such experiment is primarily medical rehabilitation. If
successful, a BCI that can detect two dimensional joystick movements with-
out relying on muscle activity can be operated even by patients with severe
motor disabilities. The output of the system could be used to control, for
example, a word processor or a wheelchair, and thereby greatly improve the
quality of life for people with ALS or spinal injuries that make other forms
of communication impossible.

63
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6.2 Procedure

Four healthy test subjects, three females and one male, volunteered to par-
ticipate in the study. The subjects were between 20 and 30 years old and free
of any form of medication. The experiment took place in a quiet room with
dim lighting at The Swedish Defense Research Agency (FOI) in Linköping,
Sweden. Only the test subject and the experimenter were allowed in the
room during the time of the experiment. The session consisted of two parts,
one per experimental condition. Each part lasted about twenty minutes and
the first part was preceded by a five-minute introduction, to help the subject
to get used to the equipment and the task to perform. The entire exper-
iment, including introduction and mounting of electrodes took about four
hours to complete. Figure 6.1 illustrates the experiment disposition.

Introduction 
5 min

First condition 
Real movements 

20 min

Second condition 
Imagined movements 

20 min

Figure 6.1: The procedure of the experiment session. The test consisted
of two experimental conditions plus a brief introduction round.

In the beginning of the session, the test subject was seated in a comfortable
chair in front of a table with a portable computer. The computer presented
the stimuli during the experiment. On the table was also a joystick, located
so that it could be operated by either the left or the right hand. One of
the subjects was left-handed and therefore performed the operations with
the left hand while the other subjects used their right hand. Throughout
the whole experiment a fixation cross was presented at the center of the
computer screen. The subjects were instructed to keep their eyes at the
cross and to relax and move as little as possible. The reason for this is that
the EEG can be very sensitive to muscle activity and that any movement,
even eye blinks, may distort the recorded signal and make it useless for
classification.

Both experimental conditions consisted of 100 trials divided into five cat-
egories. All stimuli started with a short acoustic warning tone, to tell the
subject to be alert. After one second the outline of an arrow was presented
in one of four positions, left, right, above or below the fixation cross, as
depicted in Figure 6.2.
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Figure 6.2: A stimulus consisted of an acoustic signal followed by an
indication of direction in form of an arrow on the computer screen. Each
stimulus lasted eight seconds and was followed by another acoustic signal.

6.2.1 First Condition, Real Movements

The task in the first experimental condition was simply to move the joystick
in the direction indicated by the arrow and to keep it there. The joystick
was connected to the computer that presented the stimulus, and its position
was continuously logged by the program. Once the joystick was moved to
the indicated position the outline of the arrow on the screen was filled in,
to form an all black arrow, as a form of feedback. After six seconds, the
arrow was removed and one second later, another warning tone sounded,
indicating the end of the trial. After another four seconds, the procedure
started all over again with a new trial. In twenty percent of the trials, no
arrow was presented. The subjects were then instructed to remain relaxed
and not to move the joystick at all. These trials were used to record a
baseline signal.

6.2.2 Second Condition, Motor Imagery

In the second experimental condition, the subjects were asked to merely
imagine moving the joystick, but not to perform the actual movement.
Apart from that, the procedure was identical to the first condition.

6.3 EEG Signal Recording

During each trial, EEG data was recorded from seven gold plated electrodes
attached to the skull of the subject and from two EOG electrodes mounted
above and below one eye. The EEG electrodes were positioned at C3,
C4, Cz, P3, P4, O1, and O2, according the international 10–20 system, as
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depicted in Figure 6.3. The EOG electrodes around the eye were used to
detect eye blinks.
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C3

C4

Cz

Figure 6.3: A total of seven EEG electrodes was used in the recording.

Data was recorded for eight seconds starting at the same time as the first
warning tone, that is, one second before the arrow was presented. The
signals were sampled at a rate of 256 Hz using a National Instruments NI-
DAQ 6312 12-bit A/D converter, mounted in a standard PC. All electrodes
were connected to the computer through a Grass model 12 EEG amplifier
with built-in band-pass filters. The amplification was set to 104 for the first
seven channels and to 500 for the EOG signal. All signals were band-pass
filtered between 0.3 and 30 Hz, before the sampling. The nine recorded
signals were combined to form eight channels of data according to Table
6.1. To ensure good signal–noise ratio each electrode pair was required to
have an impedance below 10 kΩ.

6.3.1 Artifact Removal

To minimize the risk of artifacts like eye blinks and other movements dis-
torting the data, all trials were visually inspected for abnormalities before
the feature extraction. Trials that contained contaminated data were dis-
carded. Figure 6.4 shows an example of an eye blink and how that affects
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Channel Electrode Reference Amplification Impedance

1 C3 Cz 104 ≤ 10kΩ

2 C4 Cz 104 ≤ 10kΩ

3 P3 Cz 104 ≤ 10kΩ

4 P4 Cz 104 ≤ 10kΩ

5 O1 Cz 104 ≤ 10kΩ

6 O2 Cz 104 ≤ 10kΩ

7 C3 C4 104 ≤ 10kΩ

8 X Y 500 ≤ 10kΩ

Table 6.1: Eight channels combined of signals from nine electrodes.

the data of all channels1. This procedure was repeated for all test subjects,
and the subject with the lowest number of discarded trials, a left-handed
female, was selected for the detailed analysis.

6.4 Preprocessing

Since data was recorded for eight seconds with a sampling rate of 256 Hz,
each channel produced 2048 samples per trial. Totally, all seven EEG chan-
nels produced over 14 thousand samples per recording. Clearly, that amount
of data is too much to handle for any neural network based classifier. Hence,
we have to do something to reduce dimensionality of the data, but without
loosing any valuable information of course. How do we do that?

6.4.1 Channel Selection

First, some channels might be unusable for classification. As described in
Figure 6.3 and Table 6.1 we have used data from seven EEG electrodes
distributed across the back of the head. The reason we selected these par-
ticular positions is that they overlay regions of the cortex that we hope
will be actively involved in the movements we want to classify. The same
electrode positions have also been used in other classification experiments

1The screenshot is taken from recorder module of the developed software. A more
thorough description of the application can be found in Appendix A.
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Figure 6.4: Artifacts caused by an eye blink. The eighth channel shows
the muscle activity around the eye and is used to detect blink artifacts.

with good results [5]. However, we do not know if all channels contain clas-
sifiable information. It is not unlikely that one or more of the electrodes
records information that is completely uncorrelated with the movement we
are interested in. In such case, that electrode can be removed to decrease
the complexity of the data, but without degrading the performance of the
classifier. We will make a more thorough analysis on electrode information
content in the next chapter. As a preparation for that analysis, we formal-
ize the problem of finding an optimal subset of channels by defining the set
consisting of all seven channels as

Ctot = {C3, C4, P3, P4, O1, O2, C3C4} (6.1)

and a subset C ⊆ Ctot as the set of c channels selected for feature extraction.

6.4.2 Dividing Data

Second, the information content in the signal might vary over the eight
seconds, and we want to keep the amount of samples needed to perform a
classification as low as possible. From all channels, ci ∈ C, a set of M win-
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dows was extracted. Each window consisted of N samples and overlapped
the previous window by T samples according to Figure 6.5. In the analysis
in Chapter 7, we will find out how the windows should be distributed to
give optimal classification results, that is, what part of the eight seconds
contain the most important information about the joystick movement.

W1 W2 W3 WM

N T

Figure 6.5: Each sample is divided into M windows of length N overlap-
ping the prevoius window with T samples.

6.4.3 Parameterize Data

To model the signal contained in the M windows a pth order lagged autore-
gressive model, LAR, was applied to each channel according to

xc (k) = −
p∑

i=1

ac (i)xc (k − iL) . (6.2)

This produced c vectors, ac, of length p per window and, hence, c·M vectors
per trial. The LAR model had a lag of L meaning that the samples used in
the AR model were separated by L samples. In practice, this was achieved
by down-sampling the recorded signals by a factor L and then applying
a standard non-lagged AR model. The reason for using the lagged model
is that it is known to make the model less sensitive to noise [18]. The
coefficients were estimated using Burg’s algorithm described in Chapter 4.

6.4.4 Creating Feature Vectors

The AR coefficients produced by the parameterization were concatenated
to form one single feature vector, of length c·p, per window w.

xw = (a1,1 a1,2 · · · a1,p−1 a1,p a2,1 a2,2 · · · ac,p−1 ac,p)
T (6.3)

These vectors were used as inputs to the neural network classifier.
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6.5 Classification

The final categorization of the extracted feature vectors was done using a
classifier based on artificial neural networks. In this experiment, we used
multilayer perceptrons with none, one or two hidden layers.

First hidden

layer

Second

hidden layer

Rest

Left

Right

Up

Down

.

.

.

.

.

.

.

.

.

a1,1

a1,2

ac,1

ac,p

Input Output

Figure 6.6: Multilayer perceptrons were used as the basis of the classifier
module.

The number of inputs of the network corresponds to the length Cp of the
feature vector, and the number of outputs was set to five, one node per
category: rest, left, right, up and down. Each node produces a real-valued
output between zero and unity. Hence, with the five outputs of the network
organized as a vector y the desired output yd for each category was set
according to Table 6.2. For example, if we present the network with an
input belonging to class 2, that is, a feature vector extracted from a trial
where the test subject moved the joystick to the right, we want the network
to produce the output (0 0 1 0 0)T . If the subject was just resting, we
want the output to be (1 0 0 0 0)T . The network was trained using the
backpropagation algorithm presented in Chapter 5.

6.5.1 Generalization

To test the classifiers ability to generalize, that is, to produce good output
values even for patterns not previously presented to it, we used the following
simple cross-validation procedure. The complete set of artifact-free trials, D,
was divided into three distinct subsets: one training set Dtrn, one validation
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Class Category Desired output

0 Rest (1 0 0 0 0)T

1 Left (0 1 0 0 0)T

2 Right (0 0 1 0 0)T

3 Up (0 0 0 1 0)T

4 Down (0 0 0 0 1)T

Table 6.2: Desired output vectors from the network.

set Dval, and one test set Dtes such that each pattern was represented in
exactly one set. 




D = Dtrn ∪ Dval ∪ Dtes

Dtrn ∩ Dval = ∅
Dtrn ∩ Dtes = ∅
Dtes ∩ Dval = ∅

The trials in the validation set and the test set were selected randomly from
the original pool of trials but controlled to ensure that each set contained
an equal amount of trials corresponding to each category.

Both experimental conditions produced 100 trials, 20 per category. In
the first condition, we had to discard 9 patterns due to eye blinks and
other artifacts. The data produced by the second condition contained 18
contaminated trials. In both cases, we selected ten trials for the test set and
ten for the validation set, each containing two trials per category according
to Table 6.3.

Movements Physical Imagined

Training, Dtrn 71 59

Validation, Dval 10 10

Test, Dtes 10 10

Table 6.3: Distribution of artifact free trials.

The training set was used to train the network and the test set to check
its performance. The validation set can be used to define stopping criteria
for the network training, as described in Section 5.9. It can also be used
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to weight the output of a network when combining two or more classifiers
[26, 11]. However, since the classifier in this experiment consisted of a single
network, the validation set was used only to decide when to interrupt the
training process.

6.6 Post Processing

As we said, the output of each node in the network is a value between zero
and unity. To make it easier to compare this value to the desired output
value, which only contains binary values, we applied a simple threshold
filter to the output of the network as shown in Figure 6.7. The output node
that produced the largest value was set to unity and the rest to zero. This
ensures that the classifier always produces outputs that correspond to one of
the predefined categories. A classification was therefore considered correct
if and only if the filtered output exactly matched the desired output.

Input Output Filtered output

1 2 3 4 51 2 3 4 5Classifier Output filter

Figure 6.7: Principle of the threshold function used for post processing.

6.7 Classification Performance

As a direct measure of the performance of the classifier, we used the amount
of correctly classified patterns in the test set divided by the total number
of patterns in the set.

Rc =
number of correctly classified test patterns

total number of patterns in the test set
(6.4)

This gives us a value between 0% and 100%. We shall refer to this value as
the classification rate or accuracy of the classifier. Note that an accuracy
of 20% corresponds to a complete random classification, since the number
of categories is five.



Chapter 7

Analysis and Results

In this chapter, we present the analysis of the recorded data and the final
results of the study. The major part of the chapter focuses on the results of
the first experimental condition, the one where the subject actually moved
the joystick. The data from the second condition is analyzed in exactly the
same way, and therefore, the results from that investigation are commented
primarily when they differ from the output of the first one.

7.1 Analysis Procedure

As described in the previous chapter, the classification of the recorded EEG
data depends on a number of parameters. The set of electrodes used, the
distribution of the windows utilized for feature extraction, the LAR model
parameters and the size of the neural network are only a few examples. All
of these parameters play important roles in the final classification, and it
is therefore interesting to see how altering them changes the final result,
the classification rate. The ultimate goal is of course to find a specific set
of parameters that gives us the highest accuracy possible. In other words,
we may regard this analysis as a multidimensional optimization problem,
where the classification rate is our object function and the parameters that
control the classification are the free variables. Mathematically, we express
this with an equation on the form

Rc = f (cwin, wwin, p, L,Hann, C, . . .) . (7.1)

Here we let Rc denote the classification rate, cwin and wwin the center and
with of the recorded window respectively and p and L the model order and
lag of the preprocessor filter. The vector Hann represents the configuration

73
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of nodes in the neural network and C the set of electrodes used. The ellipsis
at the end of the parameter list indicate that the model depend of even
more parameters. However, we hope that the six variables described are
the ones that affect the result the most, and for the rest of this analysis
we will therefore focus on these parameters. Despite that simplification,
the optimization procedure is far from trivial. There is no way of knowing
beforehand how the six parameters depend on each other so the best we can
do is to try to maximize Rc locally for each parameter and hope that this
brings us close to the global optimum.

We will start by analyzing the data from the first experimental condition,
the one where the subject performed real physical movements.

7.2 First Condition, Real Movements

In the first experimental condition, a stimulus in form of an arrow on a
computer screen, pointing in one of four directions, was presented to the
subject. The task was simply to move a joystick in the direction indicated
by the arrow. During each trial, EEG data was recorded for eight seconds,
starting one second before the stimulus was presented and lasting until one
second after the stimuli was removed. Figure 7.1 illustrates the recording
during one trial.

Stimulus 
presented

Stimulus 
removed

Figure 7.1: Optimal recording period. What part of the recorded eight
seconds contains the most important information?

7.3 Optimal Recording Period

Obviously, in a real world brain–computer interface, having to collect data
for eight whole seconds before being able to make a single classification is
too slow. Controlling a wheelchair would be out of the question, and even
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operating a word processor would be cumbersome. Besides, we know from
Chapter 4 that the EEG can be considered stationary only for windows
shorter than about one second. If using longer windows we have to replace
our static LAR preprocessor with some adaptive method, and this does not
only make the classification procedure more complex, it is also known to
sometimes decrease performance, since the amount of data produced by the
preprocessor increases [15].

So, if we can use no more than one second of the eight seconds recorded,
which part will give us the most information? There is only one way to
find out, trial-and-error. We start by extracting LAR features from 16
windows per trial. The window length is 0.25 seconds or 64 samples, and
each window overlaps the previous window by 60 samples. This gives us the
data distribution presented in Figure 7.2.

cwin

0.25 s

Figure 7.2: Window distribution. Each eight second recording is divided
into 16 quarter second windows overlapping by 60 samples.

The windows are equally distributed around the time cwin, and hence, op-
timizing Rc with respect to cwin will give us a clear indication of what part
of the recorded eight seconds contain the most information. The feature
extraction was repeated for 17 different values of cwin with the model order
set to p = 6 and the lag to L = 1. The results were then used to train a
multilayer perceptron with 40 hidden nodes in the first layer and 15 in the
second hidden layer. Figure 7.3 shows the classification rate as a function
of cwin. Here, the time is counted from when the stimulus was presented.

It is clear that the most important period for the classification is in the
segment between 1 and 1.5 seconds. We can explain this by looking at the
average reaction time for the subject. The histogram in Figure 7.4 shows the
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distribution of the reaction time1 over the 80 trials that involved movements.
The similarity with Figure 7.3 is noticeable. The average reaction time for
this test subject was 1.37 seconds meaning that the actual movement, in
most cases, took place in the interval between 1 and 1.5 seconds after the
stimulus was presented. This corresponds very well to the maximum peak
in classification accuracy.
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Figure 7.3: Classification result as a function of window center.

Returning to Figure 7.3 we note that the classification rate in the interval
between –1 and 0 seconds is around 20%, that is, no better than a random
guess. That makes sense, since we cannot expect to get any output before
we present the input. Also, in the interval above 2.5 seconds the accuracy
is no better than random. Consequently, just holding the joystick in a
fixed position does not produce classifiable EEG. At least not using the
classification method presented in this thesis.

1The reaction time is in this case measured from the moment when the stimulus was
presented until 80% of the movement was completed, that is, until the position of the
joystick reached 80% of its maximum value. This is also the point when the feedback
(filling in the arrow) was presented to the subject.
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Figure 7.4: Histogram of reaction times.

7.4 Window Width

Now that we know what part of the recorded data contains the most in-
formation, we have to determine how much data is needed to make a good
classification. We said before that windows longer than one second require
a non-static preprocessor model, so we cannot go over that. But, how short
can we make our windows before we start loosing information. Is half a sec-
ond enough? One eighth of a second? Or, maybe just a couple of samples?
As before, trial-and-error is the only way to find out.

Since the accuracy seems to have its optimum for windows centered at
1.25 seconds we repeat the first analysis, but with the window center fixed
to cwin = 1.25. Instead, we vary the window width wwin in the interval 0
to 1 seconds. The results are presented in Figure 7.5.

It seems that we were lucky when we selected a window with of 0.25
seconds in the first analysis. In fact, there is no other value we could have
picked that gives better performance. If making the window shorter we
would rapidly loose valuable information. If making it longer we would
only get a slower classifier without gaining any accuracy.

To summarize, it seems that the most important section of the recorded
EEG data is the segment between 1.1 and 1.4 seconds the part where the



78 CHAPTER 7. ANALYSIS AND RESULTS

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

70

Window width (s)

C
la

s
s
if
ic

a
ti
o

n
 a

c
c
u

ra
c
y
 (

%
)

Figure 7.5: Accuracy as a function of window width.

actual movement took place. We will therefore focus on this section in the
following analyses.

7.5 Neural Network Size

We know from Chapter 5 that the number of layers in a multilayer percep-
tron strongly affects its ability to recognize certain patterns. For example,
the XOR-problem can be easily solved using a two- or three-layer percep-
tron, while a single layer network is bound to fail since the classes are not
linearly separable. Even the number of nodes within the layers affects the
performance, and in a way that is very difficult to predict. Each node con-
tributes to the edges that make up the boundaries between classes. Hence,
a larger network means more edges and possibly a finer separation of the
categories. However, using too many nodes makes the learning process slow,
and it might also lead to over-fitting since the number of degrees-of-freedom
in the network increases. Choosing the optimal network size for a specific
task is a non-trivial problem. There have been several books written on this
topic alone. To investigate what network size is best suited for our problem
we create 13 nets, all of different sizes according to Table 7.1. All networks
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are trained five times, and the classification rate is noted each time. The
average accuracy obtained by each net is presented in Figure 7.6.

Network Input First Second Output

A1 42 – – 5

B1 42 5 – 5

B2 42 10 – 5

B3 42 20 – 5

B4 42 30 – 5

B5 42 40 – 5

B6 42 100 – 5

C1 42 5 5 5

C2 42 10 7 5

C3 42 20 10 5

C4 42 30 12 5

C5 42 40 14 5

C6 42 80 20 5

Table 7.1: Node configuration of the tested networks. Column three and
four represent the number of nodes in the first and the second hidden
layer.

Even though the differences in accuracy between the 13 networks are small,
we can see that the best results are produced by network B4, a two-layer
network with 30 nodes in the hidden layer. This is not so surprising. What is
somewhat surprising though is that the single layer perceptron A1 performs
so well. An average classification rate of 60% is actually better than most
three-layer networks tested. This is interesting because it indicates that the
whole problem of classifying the LAR processed EEG data is very close to
linear.

7.5.1 Training Time

Looking at the classification results in Figure 7.6, we note that the three
layer networks, C1–C6, seem to perform better the bigger they are. It is
therefore tempting to try to build even larger networks than the 147-node
C6 in hope of further improving the performance. However, before we resort
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Figure 7.6: Classification rate for a number of networks of different sizes.
Network A1 is a single layer network, B1 to B6 have two active layers,
and C1 to C6 are three layer networks.

to that, we should consider the downsides of working with larger networks.
One is that generalization usually deteriorates as a result of overfitting.
This is probably why performance drops when adding more than 30 hidden
nodes to a two-layer network, and we will most likely see a similar behavior
in the group of three-layer networks if we start adding nets larger than
C6. However, the main reason why we chose not to work with very large
networks in this case is that the training time explodes as the net grows.
Figure 7.7 shows the relative training time of the nets we already tested.
Since the time needed obviously depends on the computer power allocated
for the task, all values have been normalized against the training time of
the best network B4.

To put things into perspective, a standard PC with a single 1.3 GHz
Pentium 4 processor needed about 20 minutes to complete the training of a
B4 network. Even though it might be a bit off the topic of brain–computer
interfaces, it is instructive to see how the training time is affected by the
size of a neural network. Figure 7.8 shows the relative training time as a
function of the number of weights, that is, the number of free parameters
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Figure 7.7: Relative training time for the tested networks.

in the network. The relation is very close to linear, and we can probably
expect it to continue that way even for networks with somewhat more than
5000 weights. This means that a network with twice the number of nodes
compared to C6 would need over 12 hours to complete one single training
session. Also, remember that each net is trained multiple times and that
this is only one of a number of analyses performed on the data. With that
in mind it should not be too hard to resist the temptation of building very
large networks, just to gain one or two percent in classification rate.

7.6 LAR Model Parameters

The technique of using autoregressive modeling as a preprocessing step in
a BCI system is not new. In [3, 2] Anderson et al. compared classification
results of four different representations of EEG signals, including raw data,
low-pass filtered raw data, Karhunen-Loève decomposition and a frequency-
band representation calculated from AR coefficients. The results indicated
that the AR-based representation is superior to the other models. Later,
the same group extended their study [5] to include three new representa-
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Figure 7.8: Relative training time as a function of the number of weights
in a neural network.

tions, AR coefficients only, multivariate AR coefficients2 and feature vectors
composed by eigenvalues of the correlation matrix of the data. The best
results were achieved for the representations based on scalar and multivari-
ate AR coefficients. If computation time is an issue, Anderson recommends
the use of scalar AR coefficients, since the multivariate model involves more
complex calculations.

In this project, we have followed Anderson’s recommendation and rep-
resent our recorded EEG data with the coefficients of a pth order scalar
AR model. The parameters were estimated using Burg’s algorithm on a
per-channel basis and then concatenated to form a set of p·c dimensional
feature vectors, where c is the number of channels used. In another BCI
study [25], Penny and Roberts used a similar approach and showed that the
model order p strongly affects the final classification rate. Using a linear
classifier, they achieved the best results when the data was fitted to a 9th-
order model, but the results were almost identical for model orders between
3 and 10.

2Multivariate models consider not only relations between subsequent samples in the
same channel but also correlations between samples of different channels.
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Repeating that analysis on our own EEG data and using a three layer
neural network as classifier we find that a model order of p = 2, gives the
best results. All remaining analyses will therefore use a second order model.
However, as shown in Figure 7.9, the results deviate only slightly from the
maximum in the range 2 to 10.
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Figure 7.9: Classification accuracy as a function of the order p of the
LAR model.

The idea of introducing a lag in the AR model was also presented by Penny
and Roberts [19, 18]. To their experience, lagged AR models are superior to
non-lagged in being less sensitive to noise. Our experiments, on the contrary,
show that the classification rate drops rapidly when the lag is introduced
and keeps on falling as the lag is increased. This is interesting and we will
come back to this result in the next chapter. Throughout the rest of this
analysis we will use AR models without lag, L = 1.

7.7 Optimal Electrode Distribution

So far, the analyses have included data derived from all EEG electrodes,
that is, channel 1 to 7 as described in Table 6.1. In a real-world BCI
system, we would like to keep the number of electrodes as low as possible
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Figure 7.10: Classification rate versus LAR model lag.

to minimize the amount of data to process and also to avoid unnecessary
and time-consuming electrode mounting. We know from Chapter 2 that
different regions of the cerebral cortex are responsible for different functions.
It is therefore very interesting to see how much of the information used in
movement classification is extracted from each region. The goal is of course
to eliminate electrodes that do not contribute to the final result and perhaps
suggest adding electrodes to important regions not covered by the original
set.

Using the terminology we established in Chapter 6, we refer to the set of
all recorded EEG channels as

Ctot = {C3, C4, P3, P4, O1, O2, C3C4} (7.2)

and as before, we define a subset

C ⊆ Ctot (7.3)

as the set of channels actually used in the classification. To determine the
optimal subset we systematically remove one channel at the time from Ctot
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forming seven new sets.

CC3 = {C4, P3, P4, O1, O2, C3C4}
CC4 = {C3, P3, P4, O1, O2, C3C4}
CP3 = {C3, C4, P4, O1, O2, C3C4}
CP4 = {C3, C4, P3, O1, O2, C3C4}
CO1 = {C3, C4, P3, P4, O2, C3C4}
CO2 = {C3, C4, P3, P4, O1, C3C4}
CC3C4 = {C3, C4, P3, P4, O1, O2}

(7.4)

Data from all sets are preprocessed using a second order AR model and
classified by a two-layer multilayer perceptron with 30 hidden nodes. The
results are compared to the classification rate produced by the complete
set Ctot creating a relative measure ρ of the information content in each
electrode.

ρ (C) =
Rc (Ctot)−Rc (C)

Rc (C) (7.5)

What ρ (C) really says is that, compared to the classification using subset C
we can gain a factor ρ (C) in accuracy by adding the missing channel forming
the total set Ctot. Figure 7.11 presents the result of the comparison.

For three of the electrodes, P3, O1 and O2 the relative classification rate
ρ is negative, meaning that removing any of them from the set used for
classification would actually make the accuracy better. The electrode that
ruins the results the most is the O2 electrode overlying the visual cortex.
Consequently, the best set of channels of size six is formed by removing
channel O2 from the original set.

Repeating the analysis by systematically removing channels from CO2 and
calculating ρ (C) for the six sets of remaining electrodes

CO2C3 = {C4, P3, P4, O1, C3C4}
CO2C4 = {C3, P3, P4, O1, C3C4}
CO2P3 = {C3, C4, P4, O1, C3C4}
CO2P4 = {C3, C4, P3, O1, C3C4}
CO2O1 = {C3, C4, P3, P4, C3C4}
CO2C3C4 = {C3, C4, P3, P4, O1}

(7.6)

gives us the results in Figure 7.12. The most noticeable difference to the data
presented in Figure 7.11 is that the relative classification rate is now positive
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Figure 7.11: Relative information content in the original set of seven
channels.

for all channels. This of course means that all electrodes make positive
contributions to the accuracy and that removing any one electrode from the
set, CO2, will degrade the overall performance of the system. Electrode C3
alone does not add much information not already contained in the other
electrodes, but the combination with C4 in the last channel does, so we can
still not remove C3 completely.

There is more to say about the information content in each electrode, and
we will discuss this matter further in the next chapter. But first, we should
analyze the data from the second experimental condition.

7.8 Second Condition, Imagined Movements

The second condition in this experiment was in all essentials equal to the
first one, except for one important detail. Instead of physically moving
the joystick in the direction indicated by the stimulus arrow, the subject
was told to just imagine the movement, to visualize the hand moving the
joystick, but still trying to avoid all muscle activity. In some sense, this
part is both more and less interesting than the first one. It is exciting
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Figure 7.12: Relative information contents in different channels when
the channel O2 has been removed.

because it mimics a real-world situation. A brain–computer interface that
detects hand movements is of little use if the person employing it is able to
actually perform the physical movements. In such case, other more reliable
sensor systems can be used for detection, joysticks for example. One of
the basic ideas behind the research on brain–computer interfaces is that
they should be operable even by people not able to produce any voluntary
muscle movements. The question is, how do we simulate a disability like that
on healthy, non-disabled test subjects? Unfortunately, there is no simple
answer. In the first experiment, we allowed the subject to perform the
joystick movements freely, without restrictions. In this second experiment,
we add the restriction that no muscle movements must occur.

In doing so, we also introduce a number of problems in the paradigm. The
first is that the task suddenly becomes very difficult. It is extremely hard to
focus on one thought only for several seconds and not to think of anything
else. Try it. The slightest lapse in concentration might ruin the trial. The
second problem is that it is impossible to monitor the actions of the subject
during the experiment. In the first experiment, we continuously logged
the position of the joystick, and so, we could always check if the subject
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responded as expected to the stimuli. Erroneous responses, for example if
the joystick was moved in the wrong direction could accordingly be filtered
out before training the classification system.

In the second experiment, we have no way of knowing if the subject
responds correctly. Remember that the neural network classifier learns by
examples. With a total number of only twenty trials per class, a couple of
undiscovered erroneous trials could be devastating to the training process
and then in the end, the performance of the system.

7.9 Analysis of the Second Condition

The analyses performed on the data from the second experimental condition
were exactly the same as for the first one. First, the optimal recording
period was found, then the LAR model parameters and the neural network
size. Finally, the optimal set of electrodes was created by removing channels
that did not contribute to the classification rate. In four of the analyses,
the results were equal to the first condition. The window width used for
LAR modeling was wwin = 0.25 seconds and the optimal LAR model was of
order p = 2, with no lag, L = 1. As in the first experimental condition, the
differences in classification rate between various neural network sizes were
small. Therefore, the same two-layer network with 30 hidden nodes was
used in this analysis.

Focusing instead on the differences between the two conditions, we see in
Figure 7.13 that the optimum in classification rate occurred much earlier in
the process this time. The average reaction time in the first condition was
1.37 seconds, and we saw in Figure 7.3 that this corresponds very well to
the optimal center of recording period. Here, the classification rate reaches
its optimum for quarter second windows centered around 0.5 seconds, in
other words almost a second faster than when the movements were actually
performed. This is a very interesting result, which deserves, and will be
given, a more thorough discussion in the next chapter.

7.9.1 Channel Selection

The other analysis that yields different results in the two conditions is the
investigation of optimal channel selection. In the first condition, we found
that removing one channel at the time from the classifier input actually
increased the performance in three of the seven channels: P3, O1 and O2.
In the second condition only one channel, O2, gives a negative contribution
to the classification result, see Figure 7.14.
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Figure 7.13: The maximum peak in accuracy occurs earlier in this second
experiment.

Furthermore, the relative drop in accuracy when removing one channel is
higher in this second condition. It seems like the level of redundancy in
the information between channels is lower, now when movements are only
imagined. The average change in relative classification rate was 4.26% in
the first condition and 10.12% in the second.

As in the first experimental condition, this analysis was repeated after
removing the electrode that gave the most negative contribution, O2. How-
ever, the only noteworthy result of that test was that all relative accuracies
came out positive, indicating that the optimal electrode configuration in
this second condition is the same as in the first case.

7.10 Final Results

Remember how we described the classification rate of our brain–computer
interface as a real-valued function of a set of six parameters.

Rc = f (cwin, wwin, p, L,Hann, C) (7.7)
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Figure 7.14: Relative information content in the original set of channels,
second condition – imagined movements.

In the analyses of the data produced by both experimental conditions, we
have now optimized f locally for each parameter. We have found the op-
timal recording periods, optimal LAR model parameters and the best sets
of electrodes to use. We have also found neural network sizes that give a
good compromise between training time and classification rate. Table 7.2
summarizes the findings.

Of course, it is not possible to guarantee that the locally optimized ac-
curacies are equal to the global optima. And, since we do not know how
the six parameters depend on each other, there is not much we can do to
improve the situation either. Without resorting to random searching, that
is. As the matter of fact, the only way of systematically improving the pa-
rameter settings is to go through all analyses again with the values in Table
7.2 as starting points. And then again, and again, to iteratively try to make
the settings converge to stable values. However, such method would be very
time consuming and most likely improve the classification rate with a few
percent, or less, since the values used in the first run actually were quite
close to the ones presented in Table 7.2. The important point here is that
we have shown that all of the variables investigated so far, affect the final
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Parameter Real movements Imagined movements

Window center 1.25 s 0.5 s

Window width 0.25 s 0.25 s

Model order 2 2

Lag 1 1

ANN nodes (12 30 5) (12 30 5)

Electrodes {C3 C4 P3 P4 O1 C3C4} {C3 C4 P3 P4 O1 C3C4}
Table 7.2: Summary of the optimized parameter settings in the BCI
system, based on the two experimental conditions.

classification result, in one way or another. Some more, some less but they
all contribute, and hence, the analyses of each one of them are important
ingredients in the design of a successful brain–computer interface.

7.10.1 Classification Rate

The rest of this chapter will discuss the output of our classifier system, the
overall performance and a few other properties. We base the discussion on
two final analyses, one per experimental condition, with all parameters set
according to Table 7.2. This procedure is repeated eight times for statistical
validity, and the final classification rate for each repetition is noted. For the
first condition, the maximum classification rate is 77.5% correctly classified
patterns. In the second one, the corresponding value is 54.4%. These are,
arguably, the two most important results of this thesis.

7.10.2 Confusion Matrix

The reason we lay so much stress on the classification rate in the discussion
of the system performance is that it is a simple, well-defined and widely
accepted measure that allows us to compare our result to other researchers.
The truth is however, that just the classification rate alone is a quite inad-
equate way of presenting the performance of a classifier system; at least for
systems with more than two output classes. A much more informative way
is to use so called confusion matrices.

A confusion matrix is a class-by-class arrangement of the classifications
made by the system. Each row in the grid corresponds to the correct class
and the columns represent the output from the classifier. Hence, an element
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ηij in the grid indicate the amount of patterns belonging to class i that was
recognized as class j. Ideally, a confusion matrix would be an identity matrix
with ones in the diagonal and zeros otherwise. That would correspond to
a perfect classification of all test patterns in all classes. This of course is
hardly ever the case in a real-world situation.

The confusion matrices from the two experimental conditions are pre-
sented in Table 7.3 and 7.4. Examining the data in the matrices can tell us
a great deal about the behavior of the classifiers, not only the average accu-
racy. We will study the data further in the discussion in the next chapter.

(%) Base Left Right Up Down

Base 99.2 0.4 0.0 0.0 0.4

Left 3.5 89.8 0.0 5.5 1.2

Right 0.0 0.0 90.2 3.9 5.9

Up 19.1 17.2 6.3 55.9 1.6

Down 6.6 51.2 3.1 1.2 37.9

Table 7.3: Confusion matrix of the classifications performed by the op-
timized BCI system, real movements.

(%) Base Left Right Up Down

Base 63.1 15.6 0.0 15.6 5.6

Left 3.7 6.3 38.1 33.1 18.8

Right 14.4 0.0 80.6 5.0 0.0

Up 2.5 18.7 11.9 55.0 11.9

Down 13.8 10.7 0.0 13.7 61.9

Table 7.4: Confusion matrix of the classifications performed by the op-
timized BCI system, imagined movements.



Chapter 8

Discussion

In this chapter, we discuss the results of the performed experiments and
the validity of the results. We also present some method critique and talk
about what could have been done differently. The final sections contain the
conclusions drawn in the project and some suggestions for future work.

8.1 Interpretation of the Results

The analyses presented in Chapter 7 produced many interesting results.
Some of them are fairly easy to understand and explain, some of them
need, and deserve, further discussion. In this section, we will go through
the achieved results one-by-one and elaborate on some of them.

8.1.1 Optimal Recording Period

The first step in the analysis procedure dealt with what part of the recorded
data to use for classification. Inspecting the outcome of that analysis im-
mediately brings us to one of the most interesting results of this thesis. The
first experimental condition clearly indicate that the most important part of
the data for classifying real physical movement is the period corresponding
to when the movement was actually performed. The period just before the
movement did not contain any classifiable information and, neither did the
period following immediately after, when the joystick was just held in the
indicated position.

In the second condition, when the movements were only imagined a similar
peak in classification accuracy was detected. Only this time the maximum
occurred almost one second earlier. Figure 8.1 illustrates the differences.

93
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Figure 8.1: Information content at different time intervals.

One interpretation of this phenomenon is that the overall signal recorded
during a movement, consists of several different sub-signals. One signal is
correlated with the planning of the movement and can be detected when the
subject is about to move the joystick, but before any real muscle contraction
occurs. This part of the signal is present both during imaginary and real
movements. The existence of such signal has been observed in other studies
[20, 6]. Another sub-signal is related to the actual limb movement. This
part is stronger from a classification point-of-view and is only present when
the muscle activity occurs. In the second condition, this signal is inhibited
by the user, since no physical movements were allowed. Consequently, the
peak in classification accuracy for imagined movements is due to the signal
extracted during the planning of the motion. This signal is detected for
physical movements as well, but due to the difference in information content,
it is overshadowed by the stronger, movement-related sub-signal.

8.1.2 Window Width

The optimal amount of data to use for classification was 0.25 seconds in
both conditions. This is an encouraging result, since one of the major
problems with existing BCI systems is the operational speed. Wolpaw [7]
estimates that the most successful systems provide a transfer rate of 25
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bits per minute, or less. Discrimination between four classes performed
in 0.25 seconds would correspond to a theoretical transfer rate of 480 bits
per minute, if we were able to perform the classifications back-to-back. In
reality, successive categorizations will most likely have to be separated in
time to avoid data confusion, and that will of course lower the transfer
rate. Also the fact that the classification accuracy is not perfect means that
the overall speed of a real-time system would be lower than the suggested
maximum of 480 bits per minute. However, it is impossible to say how much
lower before actually testing our ideas in an online experiment.

8.1.3 Neural Network Size

We know from Chapter 5 that the size and structure of a neural network
is very important to its performance as a classifier. Small networks are
bound to fail on complex non-linear problems, and large networks are prone
to overfitting if the problem at hand is not very complex. Studying the
architecture of a successful classifier can therefore tell us a lot about the
actual problem. The best results in this study, for both real and imagined
movements, were achieved using a network with 30 nodes in a single hidden
layer. This is pretty much what we expected to find, and similar networks
have been used in numerous other studies with good results [5, 2]. What we
did not expect, however, was to get comparable results using a single layer
network, since this correspond to a linear classification, and we expected our
problem to be essentially non-linear. Nevertheless, a neural network with
no hidden layers reached a classification rate of 60% in the first condition.
This is only about 10% lower than the best performing network. The fact
that the linear classifier performs so well is a positive result and means
that the preprocessor is doing a good job. Remember that single layer
perceptrons are only able to classify categories that can be separated by
a single hyperplane. Consequently, a high classification rate using a linear
classifier indicates that the preprocessor successfully transformed the input
data into a pattern space where the classes are almost linearly separable.
The direct consequence of this finding is a recommendation for future studies
to consider linear classifiers as well as non-linear techniques.

8.1.4 LAR Model Parameters

The LAR model preprocessor is affected by two parameters: the model order
p that specifies the number of extracted parameters and the lag L, which
describes the separation of the taps in the model. The most interesting
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result of the LAR analysis is the fact that the introduction of a lag in
the model ruined the classification performance completely. This is a bit
confusing. Technically, using a LAR model with lag L compared to a non-
lagged model corresponds to re-sampling the data with a sample rate L
times lower than the original.

Throughout this experiment, we have used a sample frequency of 256
Hz. In other words, we should be able to detect components up to 128 Hz,
according to the sampling theorem. However, the data received from the
Grass 12 amplifier was already band pass-filtered between 0.3 and 30 Hz1,
before sampling. Hence, we should theoretically be able to go down to a
sampling rate of about 60 Hz before starting to loose information. Of course,
no filter is perfect, and the sampled data will most certainly contain some
frequency components over 30 Hz. To avoid aliasing we therefore applied
a digital anti-aliasing filter with a cutoff frequency of fc = 128/L before
calculating the LAR coefficients. Still, we should be able to use a lag of
up to L = 4 before removing any information in the frequency range below
30 Hz. Nevertheless, the accuracy drops dramatically already at L = 2, as
illustrated in Figure 7.10. This might indicate that the recorded EEG data
contain important information even in the spectra above 64 Hz. However,
the matter has to be investigated in more detail before drawing any definitive
conclusions. Since an experiment like that would benefit from new EEG data
be collected using a higher sampling frequency and different filter settings
we leave that question as a proposition for follow-up experiments.

8.1.5 Optimal Electrode Distribution

The search for the optimal electrode configuration revealed an interesting
connection between the information content in an electrode and its position
on the scalp. In both experimental conditions, the C4 electrode made the
strongest contribution to the classification results. To understand why, we
compare the location of that electrode to the map of the cerebral cortex
presented in Chapter 2. The C4 electrode is mounted on the right side of
the head, about 10 cm above the ear. That corresponds to the sensorimotor
area of the cortex, the part of the brain that controls movements of the left
side of the body. Remembering that the test subject was left-handed and
hence controlled the joystick with the left hand it suddenly all makes sense.

1According to the technical specification of the Grass 12 amplifier about 15% of the
amplitude of the frequency components around 100 Hz, passes through the internal band
pass-filter when the upper cut-off frequency is set to 30 Hz.
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The most important electrode for detecting movements is the one located
closest to the part of the cortex that initiates the movement.

Furthermore, it appears that the information content in the other elec-
trodes is related to their geometrical distance from the motor area, in that
the relative classification rate drops as the distance increases. Figure 8.2
shows a map of the head where the intensity corresponds to the information
content in different regions2. High intensity indicates important areas and
dark color point out regions not useful for classification.

0.020 0.081

–0.010 0.049

–0.032 –0.065

0.044

Figure 8.2: Information content in different parts of the cortex.

Another phenomenon that is interesting to observe is that the electrodes
located close to O2, for example O1, P3 and P4, became much more impor-
tant after the removal of O2. This indicates that at least some information
is shared between electrodes geometrically close to each other, in a way
that do not apply to electrodes on opposite sides of the head. Thus, when
removing only one electrode in a region, the surrounding electrodes can
partially make up for that loss due to the redundancy in information. How-
ever, removing two adjacent electrodes, for example O2 and P4, leaves a too
large area of the cortex uncovered. Hence, the remaining electrodes cannot
replace the loss of information, resulting in a drop in classification rate.

2The data presented in this case was taken from the first experimental condition.
However, the result of the second condition is similar. The intensity in between the
electrodes is interpolated using two-dimensional spline functions.
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8.1.6 Final Results

As stated, one of the best ways to examine the performance of a classifier
system is by studying the confusion matrix produced by a set of test data.
Figure 8.3 presents a graphical representation of the confusion matrices
generated by the two experimental conditions.
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Figure 8.3: Graphical representation of the confusion matrices obtained
in the two experimental conditions. The rows in the matrix represent the
correct categories and the columns the output of the classifiers.

Focusing on real movements, we see that the classification of patterns be-
longing to the base class, that is, when the joystick was not moved, is almost
perfect. For the test patterns recorded when the user held the joystick still
our BCI system responds correctly in 99.2% of the cases. Hence, separat-
ing physical movements from rest is no problem. Neither is classification of
left–right movements. Left movements are recognized with 89.8% accuracy
and right movements with 90.2%. The last two classes on the other hand
seem to be much harder to distinguish. When the subject moves the joystick
forward, the system recognizes the produced pattern in 55.9% of the cases,
and when moving it backward the accuracy drops to 37.9%.
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It is a bit hard to explain why the last two classes are so much harder to
recognize than the first three. One, somewhat far fetched but still possible,
explanation is that the number of trials that had to be rejected due to
eye blinks and other artifacts was somewhat higher in the up and down
categories resulting in smaller training sets for these classes. As we saw
in Section 5.9.4, reducing the number of training patterns can cause an
increase in generalization error. Table 8.1 presents the number of trials in
the training set and the test set for each category.

Category Total Rejected Training Test

Rest 20 0 16 2

Left 20 1 15 2

Right 20 1 15 2

Up 20 2 14 2

Down 20 3 13 2

Table 8.1: Distribution of non-rejected trials in training and test set.

As implied, this is a rather strained explanation, since the number of re-
jected trials is still very low. Nevertheless, the correlation is clear, the more
rejected trials the lower the classification rate. Could there be another ex-
planation to this? Maybe the overall quality of the recorded data is just
lower in the last two classes. Maybe the distortion from muscle activities is
higher when the joystick is pressed forward and backward due to activation
of other muscle groups. After all, in the first class, when the user performed
no movement at all, we did not have to remove any trials. This could also
explain why more trials had to be rejected in the last two categories. Either
way, the problem should be investigated further before we try to draw any
definitive conclusions.

Instead, we turn our attention to the second experimental condition and
see what results it produced. The obvious first observation is that the
classification rate is in fact lower than in the first case. The maximum
number of correctly classified test patterns is 54.4%, as opposed to 77.5% for
the first condition. This should not be a surprise. In [17] Penny and Roberts
compared classification results of a neural network based BCI system tested
on both real and imagined finger movements. Their results showed that
the average classification accuracy on imagined movement was significantly
lower than on real movements.
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The second apparent difference is the very low classification rate of patterns
belonging to the category “left” in this second condition. This is what brings
down the overall performance. There is no obvious explanation to this. Why
should the imagined left movements be so much harder to recognize than
for example right movements?

In almost forty percent of the cases patterns belonging to class left are
misclassified as belonging to class right. Why is that? Is it because the two
thoughts are too similar? No, it is not likely, since the reversed situation
never occurs. Right movements are never mistaken for left movements.

One reasonable explanation is that one, or both, of the data sets used to
train and test the neural network for left movements contained bad data.
Remember that the experiment only contain 20 trials of each category. In
the left-class case, four of them had to be removed initially due to eye
blinks or other detectable artifacts. Twelve of the remaining trials were
used for training and two for testing. With so little data, it is possible that
just a couple of bad trials can corrupt the training process and make the
classification accuracy drop like in the left class case here.

8.2 Are the Results Correct?

One question we should ask ourselves when presenting the results of a study
like the present is, can we trust the data, are the results correct? The
somewhat ambivalent answer is – yes and no.

Yes, the experiment show that EEG related to two-dimensional joystick
movements can be automatically categorized both during real and imagined
movements. At least, this was true for the test subject in this pilot study.
However, since we have only analyzed data from one subject it is impossi-
ble to draw any conclusions about the general usefulness of the presented
techniques. The EEG can vary greatly between subjects, and there is no
guarantee that the method will be successful on all people.

Moreover, we do not know anything about what type of information found
in the EEG signal the classifier is basing its decision on. On the other hand,
that is not the important issue here. The indisputable fact is, when we
are feeding the system with raw unprocessed EEG data recorded during
voluntary joystick movement, the system can effectively tell us the direction
of the movement. The problem of analyzing the actual classifier to see what
features are the most important in the EEG is an interesting but difficult
topic that is beyond the scope of this thesis. In this study, we have verified
that the system has potential, and that is what we set out to prove.
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8.3 Method Critique

In all experiments consisting of a data acquisition phase and an analysis
phase, experimenters are likely to find in the analysis that things should have
been done differently in the first phase. The present study is no exception.
This section discusses a couple of problems encountered in the analysis, and
what can be done to prevent them in future studies.

8.3.1 Shorter Data Recordings

The first analysis clearly demonstrates that collecting data for eight whole
seconds per trial is overkill. In fact, if we knew when to initiate the readings
the results indicate that a recording period of 0.25 seconds would be enough.
A reasonable compromise would be to record two seconds of data starting
at the point when the stimulus is presented.

8.3.2 More Training Data

Reducing the time required per stimulus would also enable us to increase
the number of trials per experiment run. This would not only increase the
classifiers ability to generalize, see Section 5.9, it would also reduce the risk
of bad training or test data corrupting the process.

8.3.3 Reference Condition

To make it easier to discuss the validity of the results one could argue
that the experiment should include a third reference condition where the
same sequence of stimuli is presented to the subject, but where the task
is just to relax and not performing or imagining any movements. Such
data sequence can be used to ensure that the supposed movement related
features extracted by the system are in fact due to movements and not
induced directly by the stimuli.

8.4 Conclusions

The long-term goal of this research is to build an intuitive and reliable
brain–computer interface that can be operated even by people with severe
motor disabilities. In this first step of the project, we have developed an
offline system for evaluation of different BCI techniques and algorithms.
The system was utilized in a pilot study to investigate the feasibility of
using EEG for automatic classification of voluntary hand movements. The
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immediate aim of the study was to see if we could find a set of BCI techniques
that performed well enough to motivate further research. In the thesis
introduction, we listed a number of related questions that we have strived
to answer during the project. We will now briefly review those questions
and summarize our findings.

• Is it at all possible to discriminate between two-dimensional
joystick movements based on EEG recordings? And if so,
with what accuracy? Yes, the results of the study indicate that
the EEG signals recorded during physical joystick movements do in
fact contain classifiable information about the performed movement.
That information can be extracted and classified with an accuracy of
77.5%, using the techniques presented in this thesis.

• Is it possible to make the same classification even if the move-
ments are only imagined? Yes, we have showed that the informa-
tion can be extracted when the subject only imagines performing the
motion but inhibits the actual muscle activity. This is principally
important, since it means that a fully functional system could be op-
erated even by people with motor impairments.

• How much data is needed to be able to make a reliable classi-
fication, that is, what is the speed of the system? The analyses
indicate that a recording period of 0.25 seconds is necessary and suf-
ficient to be able to make reliable classifications. Theoretically, this
corresponds to a maximum transfer rate of 480 bits per minute.

• What parts of the brain are important sources of EEG for
such classifications? Where on the skull should the elec-
trodes be placed? There appears to be a connection between EEG
electrode location and information content. Electrodes located near
the motor centra of the cortex were observed to make a much stronger
contribution to the movement classification than other electrodes on
the scalp. The information content seemed to be correlated with the
geometrical distance from the motor centra.

It should be stressed again that all of these results are based on the analysis
on one test subject, and we cannot guarantee that the suggested techniques
work for all people. Moreover, we should remember that this is an offline
feasibility study with no intention of covering all problems related to real-
time classifications.

Nevertheless, the results clearly demonstrate that the presented tech-
niques of AR modeling and ANN based categorization can be used for clas-
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sifying movement related EEG, given the right conditions. The final con-
clusion in this project is therefore that: the suggested techniques have shown
great potential, and further research on this topic can be recommended.

8.5 Further Research

As concluded, brain–computer interfacing is an interesting area that de-
serves further research. The remainder of this chapter is devoted to sugges-
tions for follow-up experiments.

8.5.1 Online System with Feedback

A natural continuation of the project described in this thesis is to extend
the developed system to make it possible to perform classifications in real-
time. The output of the online system should then be used to perform some
observable task like moving a cursor on a computer screen or controlling
a robotic arm. Previous experiments have shown that the classification
accuracy of the system often increases when the user is provided with some
form of direct feedback on the movements [24].

8.5.2 Higher Sample Rate and Shorter Recording Periods

In our experiment, we used a sample frequency of 256 Hz to record eight
seconds long segments of EEG data per trial. The analyses of that data
indicate that quarter-seconds segments contain enough information to make
reliable classifications. In a new experiment, we should therefore strive to
shorten the recording time per trial to be able to collect more trials per test
subject. We know from Section 5.9 that more training data usually result
in better generalization performance.

The recorded EEG data was band-pass filtered between 0.3 and 30 Hz
before sampling. This is generally believed to be the most interesting part
of the frequency spectra in an EEG signal. The analysis of LAR model pa-
rameters on the contrary indicates that the signal might contain interesting
information well above 30 Hz. To be on the safe side we therefore recom-
mend using a higher cut off frequency, and consequently, a higher sample
frequency, for example 1 kHz, in future experiments.

8.5.3 Committee Machines

Another trick that can be applied to our problem to increase classification
accuracy is so-called output averaging. In practice, this means that the out-
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puts of a number of classifier systems are combined in some way to produce
an overall output. The systems can be working in parallel or with a bias in
time. In mathematics, this type of construction is called a committee ma-
chine. The combination algorithm can be simple addition, majority voting
or more sophisticated statistical techniques. Simple committee machines
have been used in other BCI applications with good results [21, 1]. More
advanced techniques include boosting and so-called hierarchical mixture of
experts [11, 26]. Applying any of these techniques on our BCI problem may
help to improve classification accuracy even further.
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Appendix A

The Developed BCI System

One of several purposes of this project was to develop a general tool for
further research on the techniques of brain–computer interfacing. The re-
quirements on the system were that it should be fully functional, easy to
extend and modify, and include all essential modules normally contained in
an offline BCI system. The result of the work is a Windows based1 analysis
tool that handles all the links in the chain of brain–computer interfacing
from recording, via preprocessing and classification to post-processing. In
this chapter, we will take a brief look at the functionality of the software
and the hardware used with it. We will do that by reviewing the steps of
the first experimental condition from an operator’s point-of-view.

A.1 Structure of the System

The developed software actually consists of two separate programs: the
main BCI application and a stimuli presentation program. The system can
be run on a single PC or on two separate computers communicating over a
TCP/IP network, as described in Figure A.1.

A.1.1 BCI Server

The major part of the system is controlled by the server application. The
server tells the stimuli client when to present a stimulus, and it also initiates
the recordings of the data through the EEG recorder. After the reading is
completed, the BCI server handles the preprocessing and the classification

1Both the server application and the stimuli client are written in C++. The software
was developed using Microsoft Visual Studio 6.0 under Windows 2000. The total amount
of code is about 30.000 lines.
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P201

P201

Experimenter Main BCI server EEG amplifier

Stimuli presentation client Test subjectInput device

Figure A.1: The structure of the BCI system used in the experiment.

of the data. The server is the most important part of the system, and
therefore, this chapter will be very much focused on the functionality of
this application.

A.1.2 Stimuli Presentation Client

The main purpose of the stimuli client is to present visual stimuli to the
test subject, as dictated by the server. The client has built-in support for
stimuli consisting of simple geometrical figures, like the arrows used in this
project, but it can also be extended through a simple script language to show
arbitrary pictures represented as bitmaps. The script language can also be
used to incorporate acoustic signals in the stimuli. In our experiment, we
used this feature to indicate the beginning and the end of a trial, to tell the
subject when to be alert and when to relax.

A.1.3 EEG Recorder

The recorder system used in this project was a Model 12 amplifier from
Grass-Telefactor combined with a NIDAQ 6023E data acquisition card from
National Instruments. The Grass system, shown in Figure A.2, has 16
single-channel amplifiers with built-in band-pass filters and automatic elec-
trode impedance control. The actual recording of the amplified and filtered
data was handled by the I/O card, which was mounted in the server PC.
The card simultaneously samples up to 16 channels of data with 12-bit pre-
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cision and communicates with the BCI application through the PCI bus of
the computer.

Figure A.2: A Grass model 12 unit was used for amplifying and filtering
the EEG.

A.2 Experiment Walkthrough

To demonstrate some of the functionality of the BCI application we will now
go back to the point of the first experimental condition and walk through
the setup, the experiment and the data analysis, step-by-step. Remember
that the purpose of the experiment is to categorize real two-dimensional
joystick movements based on EEG recordings.

A.2.1 Hardware Setup

First, the system has to be set up according to Figure A.1 with two com-
puters and an EEG amplifier. Seven EEG electrodes are mounted on the
skull of the test subject at the positions Cz, C3, C4, P3, P4, O1 and O2
as defined by the 10–20 system. Two additional EOG electrodes mounted
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close to the subject’s right eye are used to detect eye blink artifacts. All
electrodes are connected to the Grass amplifier and combined to form eight
channels of data according to Table 6.1.

The stimuli presented to the test subject consist of arrows pointing in four
different directions left, right, up and down as exemplified in Figure A.3. As
described, the task for the test subject is to move a joystick in the direction
indicated by the arrow. If no arrow is presented the task is to simply relax
and try not to move at all.

Figure A.3: The stimuli presentation client.

A.2.2 Offline Experiment

The BCI system described in this thesis is an offline analysis tool. This
means that the process of collecting the EEG data is separated from the rest
of the analysis. No classification is done in real-time. Figure A.4 illustrates
the procedure of a typical offline experiment.

First, the EEG data is collected in the recording process. This is the
only phase of the experiment that involves the test subject and, hence, it is
the only part that has to be performed in real-time. During the recording,
a number of stimuli are presented to the subject. He or she responds by
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Figure A.4: Principle of an offline analysis tool.

moving the joystick and, during that movement, the subject’s brain waves
are recorded. The collected EEG is stored in files for later processing, one
file per stimulus. To avoid distorted recordings corrupting the classification
process all files are manually inspected for artifacts. Trials that contain for
example eye blinks are removed.

The purpose of the preprocessing phase is to load the remaining EEG
data, convert it, file by file, and store the output as training examples for
the classification module.

Finally, the classifier module loads the training files and starts learning
the examples contained within it. Throughout the learning process, the per-
formance of the classifier is tested against a set of test examples produced in
the same way as the training patterns. The result is presented continuously,
and the training is stopped when a sufficient classification performance is
reached.

A.3 The Recorder Module

The recording phase of the experiment is controlled by the recorder module
in the server application. Figure A.5 shows a screenshot of the module just
after the reading of eight seconds of data.

The recorder is the control panel from where the first part of the exper-
iment is managed. Here we can setup the hardware, initiate data readings
and send commands to the stimuli client. The recorded data is presented
graphically in the same way as on a paper strip chart. A built-in DSP tool
makes it possible to analyze data online. Analyzes include digital low-pass,
high-pass, band-pass and band-stop filters, Fourier transforms (FFT), as
well as functionality for rescaling, calculation of statistical properties etc.
The processed data can be saved to file using a simple text-based format
that can be easily imported into other signal processing software like Matlab
and LabView. It is of course possible to import data the same way.
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Figure A.5: The recorder module.

A.3.1 Manual Initiation of Recordings

As described, each trial in the experiment can be started from the recorder
module. To do this we first connect to the stimuli client through the port
specified in the field “Network port”. When the connection has been estab-
lished we can remotely present stimuli to the subject by entering the pre-
defined number of the stimulus in the field marked “Associate with class”
and pressing the “Send” button. Exactly what stimulus will be presented
and how long it will last is defined by the script file running on the stimuli
client, as described in the previous section. The actual recording is initiated
by entering the sample frequency and the total number of samples to read
in the two fields in the upper left corner of the module and then pressing
the “Record” button. When the scanning is completed, the data can be
saved to file using the “Export” function.

A.3.2 Automatic Initiation of Recordings

In a real experiment, we typically want to present the subject with a large
number of stimuli in a sequence and record the EEG during every one of
them. That would mean repeating the procedure described above; present-
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ing stimuli, recording and saving the data, over and over again. To simplify
this task the server includes a simple automation functionality that makes
it possible to program the behavior of the system through a script file. The
listing A.1 below shows what such file might look like for our experiment.

Program A.1 BCI Server Automation Script

# Script file for BCI Experiment

# Author: Pontus Forslund

# Date: 2001-07-08

RESET # Reset counter

CONNECT 1975 # Connect to stimuli client through port 1975

MESSAGE "Press OK to start " # Wait for experimenter to start session

SLEEP 10000 # 10s delay. To give experimenter a chance to leave the room

# Start recording session

AUTOREC 2048 256 2 E:\BCIProject\Result\result \@.rec 4000

AUTOREC 2048 256 3 E:\BCIProject\Result\result \@.rec 4000

AUTOREC 2048 256 1 E:\BCIProject\Result\result \@.rec 4000

AUTOREC 2048 256 0 E:\BCIProject\Result\result \@.rec 4000

AUTOREC 2048 256 3 E:\BCIProject\Result\result \@.rec 4000

AUTOREC 2048 256 0 E:\BCIProject\Result\result \@.rec 4000

AUTOREC 2048 256 1 E:\BCIProject\Result\result \@.rec 4000

AUTOREC 2048 256 2 E:\BCIProject\Result\result \@.rec 4000

AUTOREC 2048 256 1 E:\BCIProject\Result\result \@.rec 4000

...

DISCONNECT # Close the network connection

MESSAGE "Experiment completed" # Experiment finished

The script code is rather self-explaining, except for the perhaps most im-
portant command, AUTOREC. Each call to AUTOREC corresponds to one trial
in the experiment. In this case a total of 2048 samples of data are recorded
each trial with a sample frequency of 256 Hz. The stimulus presented to
the subject is defined by the third argument, and the fourth argument tells
the server where to save the results. The tag \@ is an integer variable that
is reset at the beginning of the program and then incremented on each en-
counter to give all result files unique names. All trials are followed by a
4000 milliseconds delay before the next trial.

A.4 The Preprocessor

Once the recording is completed and all data is saved to files, the prepro-
cessing phase can begin. The fist step is normally to remove all trials that
contain data contaminated by artifacts like eye blinks or other distortions.
The easiest way to do this is by visually inspecting the data in the recorder
module and simply delete all files that contain corrupted samples.
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The remaining files are then loaded into the preprocessor module for feature
extraction. Figure A.6 shows a screenshot of the module. The fixed param-
eters in the box “overall settings”, tells us that each loaded file contain eight
channels of data consisting of 2048 samples recorded with a frequency of 256
Hz. All trials are associated with one of five outputs corresponding to the
movement performed by the subject during the recording.

Figure A.6: The preprocessor module.

In this example the data recorded during each trial is divided into 16 win-
dows of 64 samples. Each window overlaps the previous by 60 samples, and
the first window starts 256 samples into the recorded sequence. The last
channel is only used to detect blink artifacts and is therefore excluded from
further processing.

The module can handle several preprocessor filters in parallel, but in this
example, we are using only one; a second order autoregressive model with
no lag computed using Burg’s algorithm, as described in Chapter 4. Burg’s
model extracts two AR coefficients from each channel producing a total of
fourteen features per window. These features are concatenated into a vector
and stored in a file together with the movement class associated with the
trial. Hence, the output from the preprocessor is a file containing a number
of input–output pattern pairs, one pair per window. This file can later be
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used to train or test the classifier in the last module. Normally the set of
artifact free trials is divided into two or three parts that are preprocessed
separately. One set is used to produce a file of training examples. The other
sets, which are usually smaller, produces test and validation patterns that
are used to measure the performance of the classifier as training progresses.

A.5 The Classifier

The last component of the BCI software is the classifier module, shown in
Figure A.7. Here the actual classification of the extracted features takes
place. The classifier is the most important, but also the most complex
module, and in this section, we will only describe a subset of its features.

Figure A.7: The classifier module.

Let us assume that the preprocessing phase produced two files of input–
output patterns; one file based on 90 percent of the artifact free trials and
one file based on the remaining 10 percent. The first file is used to train the
classifier and the other to test its performance.

After loading the training and test files, we should decide what type of
classifier to use. The program is designed to handle several types of adaptive
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classifiers, like different kinds of neural networks, genetic algorithms etc, and
even combinations of them. However, in this first version of the software
the only implemented paradigm is the multilayer perceptron described in
Section 5.6.

To create an MLP network we simply select the “Add” button and then
pick the MLP from an appearing list of available classifiers. Upon creation
of a classifier, a dialog box with the properties associated with it appears, as
shown in Figure A.8. In the MLP case, we are asked to specify the learning
rate and the momentum as well as the number of nodes in the hidden layers.
The number of nodes in the input and the output layers are already specified
by the dimension of the training patterns. In our example, the preprocessor
produced 14 features per window, and therefore, the network has to have
14 input nodes. The output nodes correspond to the five target classes for
the classification; rest, left, right, up and down, and hence, the network has
five output nodes.

Figure A.8: The multilayer perceptron setup.

Once the classifier is created, the training of the network can be initiated by
pressing the “Learn” button. Figure A.7 shows a screenshot of the classifier
module after the training has proceeded for a while. The lines marked with
boxes and circles in the graph window show the networks training and test
error respectively. As we expect, both error curves start at about 0.5 for a
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completely untrained network and then decrease as the training proceeds.
The third curve, marked with triangles, describes the classification accuracy
based on the test set, and it can accordingly been seen as the generalization
performance of the classifier. Naturally, the accuracy at the beginning of
the training session is around 20 percent, since it corresponds to a random
guess between five categories. However, as the network learns the problem
at hand, the generalization capability quickly improves, and after about
3200 epochs, it reaches its maximum. After that point, the network starts
to overfit the training data, resulting in a drop in test accuracy. To avoid
the problem of overfitting the state of the network is automatically saved
every time the generalization accuracy, based on either the test set or the
validation set, reaches a maximum. This point is marked out with a small
square just above the graph area. This way we can always go back to the
best state encountered so far by pressing the “Revert” button.

The button marked “Add noise” is used for rescuing networks that have
been trapped in local minima. Remember that the backpropagation algo-
rithm always looks for an optimum in the direction of the steepest descent
of the training error. Accordingly, if the algorithm finds a local non-optimal
minimum, chances are that it will never find its way out of there – a least
not without help. The add-noise-functionality provides that help by effec-
tively pushing the operating point of the algorithm a small step in some
random direction. The purpose is of course to get the network out of the
local minimum and hopefully on the track towards a global minimum.

After the training is completed, the program automatically generates a
report with essential information about the session such as network settings,
classification rates, generalization errors and confusion matrices. It is also
possible to study the behavior of the network for each input pattern indi-
vidually. This functionality can be an invaluable tool when analyzing the
actual classifier and trying to extract information from the trained neural
network. Such analysis, however, is regarded a highly complicated task [4]
and was considered out of the scope of this project.
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